
Context Discovery in Ad-hoc Networks

Fei Liu

Graduation committee:

Chairman: Prof. dr. ir Anton J. Mouthaan
Promoter: Prof. dr. ir. Boudewijn R. Haverkort
Assistant promoter: Dr. ir. Geert Heijenk

Members:
Prof. dr. Marilia Curado University of Coimbra,

Portugal
Prof. dr. ir. Erik R. Fledderus Eindhoven University of Technology/TNO
Prof. dr. ir. Sonia Heemstra de Groot Delft University of Technology/

Twente Institute for Wireless & Mobile Communications
Prof. dr. Hans van den Berg University of Twente/TNO
Prof. dr. ir. Kees C.H. Slump University of Twente

CTIT Dissertation Series No.11-200
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, 7500 AE Enschede

ISSN 1381-3617
ISBN 978-90-365-3207-5
DOI 10.3990/1.9789036532075

Publisher: Wöhrmann Print Service
Cover design: Fei Liu and Wouter Hermelink

Copyright c© Fei Liu 2011

CONTEXT DISCOVERY IN AD-HOC

NETWORKS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
Prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op donderdag 9 juni 2011 om 12.45 uur

door

Fei Liu

geboren op 17 september 1980
te Changzhou, China

Dit proefschrift is goedgekeurd door:
Prof. dr. ir. Boudewijn R. Haverkort (promotor)
Dr. ir. Geert Heijenk (assistent-promotor)

Abstract

With the rapid development of wireless technology and portable devices, mobile ad-
hoc networks (MANETs) are more and more present in our daily life. Ad-hoc net-
works are often composed of mobile and battery-supplied devices, like laptops, mo-
bile phones, and PDAs. With no requirement for infrastructure support, MANETs
can be used as temporary networks, such as for conference and office environments,
and for disaster areas. The disadvantage is that they usually have limited bandwidth
and that devices in ad-hoc networks have energy-constrained power supplies, which
requires simple and efficient underlying communication protocols. One of the most
fundamental actions that such devices in networks need to do is to find information
about the environment they are operating in. To share and use the available context
information in the network, devices first need to discover and locate the required
information. This action is called context discovery. However, none of the existing
discovery protocols can well support resource-limited fully-distributed MANETs.
Therefore, in this thesis, we design and develop a new context discovery protocol
for MANETs, which is called Ahoy.

By using attenuated Bloom filters, Ahoy reduces traffic load to discover avail-
able context information and provides directional probabilistic querying. We build
an analytical model to evaluate the performance of Ahoy compared with two con-
ventional approaches: pro-active and reactive discovery protocols, and to allow for
optimization of Ahoy’s parameters. The results of the analytical model are validated
by simulations. We estimate the network traffic generated by Ahoy in both static
and dynamic environments. We find that Ahoy requires significantly less network
traffic than the other two protocols in static networks, and that it is stable in a
dynamic environment in which the network topology may change.

We also study the vulnerability of Ahoy when it encounters different malicious
attacks. Our analyses shows that compared with pro-active and reactive protocols,
Ahoy is not more vulnerable than the other two protocols. In some cases, the use of
attenuated Bloom filters can even help to protect the contents of packets up to a cer-
tain level. In case of serious risks, we propose specialized security countermeasures
to enhance the network security of Ahoy.

Finally, we build a prototype of Ahoy and test it on UNIX-like platforms.

v

vi

Through these analysis and studies, we conclude that the novel discovery protocol
Ahoy proposed in this thesis can discover information efficiently, while generating
only little network traffic, in both static and dynamic fully-distributed MANETs.

Contents

1 Introduction 1
1.1 Background . 2
1.2 Motivation . 6
1.3 Design Requirements and Assumptions 8
1.4 Research Questions . 9
1.5 Approach and Dissertation Structure 11

2 Context and Service Discovery Protocols 15
2.1 Overview . 15

2.1.1 Information Description . 16
2.1.2 Storage Methods . 17
2.1.3 Discovery Methods . 18

2.2 SDPs for MANETs . 19
2.2.1 Centralized approach . 19
2.2.2 Cluster-based approach . 20
2.2.3 Distributed Approach . 21

2.3 Discussion . 23

3 Context Discovery Using Attenuated Bloom Filters 27
3.1 Bloom Filters . 28

3.1.1 Basic Concept of Bloom filters 28
3.1.2 Two Basic Functions . 30
3.1.3 Attenuated Bloom Filters . 34

3.2 Protocol Overview . 35
3.3 Context Exchange . 38

3.3.1 Context Aggregation . 38
3.3.2 Context Exchange . 40
3.3.3 Design Choices . 43

3.4 Context Query . 48
3.4.1 Context Query . 48

vii

3.4.2 Design Choices . 49
3.5 Context Update and Maintenance . 57
3.6 Discussion . 63

4 Performance Modeling 65
4.1 Modeling Preliminaries . 66

4.1.1 Network structure . 66
4.1.2 Connectivity in Ad-hoc Network Models 67

4.2 Cost Functions . 74
4.2.1 General Assumptions and Related Vital Parameters 75
4.2.2 General Functions . 76
4.2.3 False Positive Probability . 78
4.2.4 Packet Size . 81

4.3 Analysis of two Reference Protocols 83
4.4 Experimental Results . 84

4.4.1 Basic experiments . 85
4.4.2 Extensive experiments . 90
4.4.3 Summary . 94

4.5 Model Validation . 98
4.5.1 Brief Introduction to Simulation Model 98
4.5.2 Proof of Equivalent Overhead Cost 99
4.5.3 Comparison setup . 101
4.5.4 Experimental Results . 102
4.5.5 Summary . 105

5 Dynamic Connectivity in Mobile Environment 107
5.1 Probability of Updating . 108
5.2 Grid Structure . 110

5.2.1 Link Disappearance . 110
5.2.2 Link Appearance . 112
5.2.3 Node Disappearance . 115
5.2.4 Node Appearance . 116
5.2.5 One Moving Node . 121
5.2.6 Summary . 130

5.3 Circular Structure . 132
5.3.1 Simulation Setup . 132
5.3.2 Node Disappearance . 133
5.3.3 Node Appearance . 137
5.3.4 Packet Loss . 139
5.3.5 One Moving Node . 142

viii

5.3.6 Summary . 145
5.4 Comparison between three protocols 147

6 Vulnerability Analysis 149
6.1 Summary of Attacks . 150
6.2 Damage from the attacks . 152
6.3 Privacy Intrusion . 154

6.3.1 Sniffing of advertisement packets 154
6.3.2 Sniffing of query packets . 156
6.3.3 Sniffing of reply packets . 158
6.3.4 Summary . 158

6.4 Lower Discovery Efficiency . 159
6.4.1 Modification . 159
6.4.2 Packet dropping . 168
6.4.3 Replay . 169

6.5 Network Jamming . 170
6.5.1 Flooding advertisement packets 170
6.5.2 Flooding query packets . 171
6.5.3 Flooding reply packets. 173
6.5.4 Summary . 173

6.6 Countermeasures . 174
6.6.1 Encryption . 175
6.6.2 Michael: Message Integrity Code 176
6.6.3 Authentication algorithms . 176
6.6.4 Rule management . 177

6.7 Summary . 183

7 Proof-of-Concept Implementation 185
7.1 Implementation Choices . 186

7.1.1 Context Information Type Format 186
7.1.2 Context Duplication . 187
7.1.3 Query Format . 187
7.1.4 Query Method . 187
7.1.5 Route Recording . 188
7.1.6 Means of Query Propagation 188
7.1.7 Underlying Protocols Support 188

7.2 Message Type and Message Format 189
7.2.1 Address . 189
7.2.2 Advertisement . 190
7.2.3 Query . 191

ix

7.2.4 Reply . 191
7.2.5 Keep-alive . 192
7.2.6 Update request . 192

7.3 Functional Description . 192
7.3.1 Event and State Variables . 192
7.3.2 Initialization . 194
7.3.3 Ahoy Advertisements . 195
7.3.4 Ahoy Queries . 195
7.3.5 Ahoy Responses . 196
7.3.6 Keep-Alive Messages . 196
7.3.7 Update-Request Messages . 197
7.3.8 User Advertisements . 197
7.3.9 User Revocations . 198
7.3.10 User Queries . 198
7.3.11 The Keep-Alive Timer . 199
7.3.12 The Advertisement Timer . 199
7.3.13 The Query Cache Cleanup Timer 199
7.3.14 The Service List Cleanup Timer 200
7.3.15 Query Timeouts . 200
7.3.16 Shutdown . 200

7.4 Testing and Results . 200
7.4.1 Test Goals and Settings . 200
7.4.2 Test scenarios . 201
7.4.3 Test results . 204

7.5 Discussion . 211

8 Conclusions and Future Work 213
8.1 Conclusions . 213
8.2 Future Work . 216

A Figures of the Overhead Cost by Ahoy, the Proactive and the Re-
active Protocols with Different Paramters 219

B The Probability Distribution of the Number of Bits Set 235

Bibliography 238

About the author 247

Acknowledgements 251

x

Chapter 1

Introduction

Nowadays, more and more people have portable wireless devices, such as laptops,

PDAs, and mobile phones. These devices are used in mobile ad-hoc networks

(MANETs), in which people can share information and services among each other.

One of the essential functions in MANETs is to support context information discov-

ery. Context discovery protocols should be capable to find and locate information

that is distributed in the network. These protocols should be simple and efficient,

due to the limited bandwidth that is available in MANETs, and due to the limited

energy capacity of the battery-powered devices.

Existing discovery protocols cannot fulfill both requirements at the same time.

In this thesis, we therefore propose a novel space-efficient context discovery protocol

for resource-constrained MANETs. The protocol is named Ahoy. It uses Attenu-

ated Bloom Filters (ABFs) to represent context information types in the network.

Compared with conventional solutions, such as proactive and reactive protocols, it

consumes less storage space for information, supports selective querying, and reduces

the traffic generated for discovering information in the network. Ahoy thus helps to

save bandwidth and transmission power which is essential for ad-hoc networks.

This chapter is organized as follows: Section 1.1 introduces background infor-

mation. The motivation for the thesis is presented in Section 1.2. Then, we discuss

the design requirements and assumptions, in Section 1.3. Thereafter, we pose the

main research questions in Section 1.4. Section 1.5 elaborates on the approach and

the structure of the thesis.

1

2

1.1 Background

Wireless technology is developing rapidly, and in recent years, it has been deployed in

many different application areas, from personal devices to satellites. We can connect

to almost every device using wireless technology. More and more consumers possess

personal devices, such as PDAs, laptops, and cell phones, which are facilitated by

wireless communication technology, such as Bluetooth [7] and WIFI [39]. As a result,

research and application developments are extending from the traditional wireless

access networks to networks with a more direct communication manner: mobile

ad-hoc networks (MANETs).

MANETs, unlike Ethernet and infrastructure Wireless LAN (WLAN), do not

rely on fixed infrastructures. Devices can establish an arbitrary network via wireless

communication when needed. We call the devices that establish the network, the

nodes of the network. The wireless communications between nodes are called links.

Generally, nodes are not required to load or exchange configuration files to form or

join the network [73]. Often nodes are battery-powered and able to move freely in

any direction at any speed, which can lead to a frequent variation in connectivity.

Wireless technologies that are used in MANETs, like Bluetooth, have improved in

recent years. However, they still cannot provide the same data rate and bandwidth

as Ethernet and infrastructure WLAN.

MANETs can be used in various situations, especially when no infrastructure

support is available or when it is too time-consuming and expensive to set up an

infra-structured network. Normally, MANETs are temporary networks and their

topology is unpredictable and dynamic. Typical scenarios in which MANETs are

established include [71]:

• Office and conference centers. In such an environment, most of the resi-

dent devices, such as desktop computers, printers, and scanners, are generally

connected to Ethernet or WLAN. However, the mobile devices from employees

or visitors, are often not authorized to connect to the fixed network. Consider

a meeting scenario, where many visitors coming from cooperating partners

need to share documents, exchange name cards, and use printers. Ad-hoc

networks can satisfy such needs.

• Disaster relief areas. One of the major applications for ad-hoc networks

3

is emergency rescue. It is usually not possible to establish an infrastructure

network in areas damaged by nature or man-made disasters, such as fires,

explosions, tornados, or earthquakes. Buildings and base stations are badly

damaged or destroyed and there is no time to build up a fixed network to

facilitate rescue teams. However, rescue teams can build up their own ad-hoc

networks to communicate with each other. The refugees can also join the net-

works and provide crucial personal information like their location and health

status, via their personal mobile devices such as cell phone or global position-

ing system (GPS). Meanwhile, the rescue team can offer first-aid instructions

to them.

• Personal environments. With the surprisingly fast development of personal

devices and their applications, regular consumers can establish their own per-

sonal networks, which may contain cell phones, laptops, wireless keyboards

and mouses, gaming devices, cameras, and video recorders. Furthermore, peo-

ple can share devices with friends. This kind of network can be set up at home

as well as in restaurants, theaters, cinemas, and even in high-speed moving

objects like cars and trains.

• Remote areas. Ad-hoc networks can also be set up in remote open areas

where it is difficult to build fixed networks. This type of network is commonly

used to support research works, like in polar areas, glaciers, high mountains,

and forests.

Figure 1.1 visualizes an example of a MANET in an office scenario. Various

devices are connected to each other via wireless links. They form an ad-hoc network

to provide information and services to each other.

MANETS can appear in specialized forms, such as wireless sensor networks

(WSNs) [2] and vehicular ad-hoc networks (VANETs) [46]. WSNs are mostly com-

posed of small devices like sensors. These sensors collect data that are sent to some

central servers for further processing. Compared with normal MANETs, the devices

in WSNs often have relatively little storage capacity and processing power, and

they are generally less mobile. In this respect, VANETs can be considered to be

another extreme. Devices in VANETs are equipped in vehicles which move around.

Such networks are highly dynamic, as the speeds of the moving devices can be very

4

Figure 1.1: A MANET in a conference center, which consists of computers,
PDAs, webcams, printers, projectors, and phones.

different. For example, on a highway cars can approach each other quite rapidly, es-

pecially in (nearly) congested traffic flows. As a result, two vehicles can move inside

and outside each others communication range with high frequency. On the other

hand, devices in VANETs can be as powerful as a normal computer. The constraints

regarding the small devices in WSNs are therefore not a concern in VANETs. In this

thesis, we do not consider extreme forms of MANETs such as WSN and VANETs,

but focus on more regular MANETs composed of personal devices, such as PDAs,

laptops, and cell phones. These devices are often battery powered. In general, they

have less processing power than PCs and servers, but more than sensors. Such de-

vices are carried by people, which may move with high speed, such as in high-speed

trains. However, we assume that the relative movements between the nodes in the

network are not as large as in VANETs.

For networks without predefined topologies, a major challenge is to find and

locate the desired information source that is being requested by an arbitrary device.

This action can be defined as context discovery. In computer science, the most

referred definition of context is given by Dey et al. [22] as:

Context is any information that can be used to characterize the situation

of entities (i.e. whether a person, place, or object) that are considered

relevant to the interaction between a user and an application, including

5

the user and the application themselves. Context is typically the loca-

tion, identity and state of people, groups and computational and physical

objects.

In this definition, context actually refers to context information. For example,

if the entity is a printer, its context includes color, location, queue length, etc. In

this thesis, we categorize context information into types, called context information

types. For example, we have the following two contexts: “Device A is located in

room B” and “Device A is at the third floor”. Both contexts describe the detailed

location of Device A. They can therefore be categorized into the same type “location

of Device A”. In MANETs, every node plays two roles. It can be both a context

source which provides the context information, and a context user which looks for

and uses available information. In this thesis, context discovery is defined as follows:

Context discovery is the action to discover where (the) relevant context

information is located.

When one looks for context information, one generally first queries for the type

of the requested information. For example, when we want to know where Device

A is, we ask our neighboring nodes to provide us with the “location of Device A”.

When we find the context source that can give us this context information, we then

retrieve the detailed contents.

To make sure that nodes understand each other, it is important to standardize the

context information types in the network. We assume that the context information

types are standardized by specific names, and that all nodes know these standard

names. From now on, when we refer to “context” or “context information”, we

actually mean the type of context information.

Recently, much effort has been spent to develop protocols for context discovery.

However, most of these efforts have been related to networks in which information

is centrally stored, and the proposed methods are less suited for decentralized ad-

hoc networks. In this thesis, we present a novel discovery protocol for simple and

cost-efficient context discovery in ad-hoc networks.

6

1.2 Motivation

When devices just arrive in a new environment, they do not have any idea about

which context information is available around. Before they take any action, i.e.,

establish communication links with other nodes, they often want to learn first what

is available around and whether there is any relevant context information reach-

able. In this type of networks, which is called context-aware networks, an overview

of available context information is provided to nodes that would like to join the

network. Nodes establish links, based on this knowledge. This concept has also

been defined in the Freeband Project AWARENESS (context AWARE mobile NEt-

works and ServiceS) [25], which mainly focused on the development of services and

network infrastructures for context-aware and proactive applications. The research

described in this dissertation has been performed in the context of the Freeband

AWARENESS project, and it aimed to study and design a context discovery proto-

col for context-aware MANETs.

Context discovery in such networks faces some serious challenges. First of

all, nodes should be able to share the available context information with other

nodes. Moreover, there are challenges which are mostly related to special features

of MANETs, according to [67] and [14], as follows:

• Unstable wireless links. Nodes connect to each other via wireless links,

which are not as reliable as wired connections. The quality of the trans-

mission can be affected by, e.g., weather, temperature, and the surrounding

environment.

• Mobility. Nodes have the freedom to move. Therefore, links between nodes

change frequently, and network topologies vary accordingly. As a consequence,

the locations of context information also change frequently.

• Arbitrary and decentralized topology. As a result of the dynamic struc-

ture of ad-hoc networks, nodes are randomly distributed in space. With no

base station coordinating the flow of messages, each node forwards packets to

and from the others individually.

• Battery-powered small devices. Nodes are often battery powered, which

offers the advantage of mobility, but also restrains the power consumption.

7

• Limited bandwidth. Due to the wireless communication, ad-hoc networks

have limited bandwidth in general. Large packets and frequent packet ex-

changes can easily jam the network.

• Self-organized and self-configured. Nodes are capable of configuring by

themselves with little or no human interference to join the network and recon-

figure themselves automatically as the network changes.

We claim that existing discovery protocols cannot handle these characteristics

and challenges in a satisfying way.

We can categorize existing discovery protocols by the way they store information.

According to this classification, which is described in detail in Section 2.1.2, we can

distinguish between the following three types:

• centralized approach;

• cluster-based approach;

• distributed approach.

The centralized approach requires master or gateway nodes to maintain directo-

ries. This requires some sort of hierarchy in which there is sufficient storage capacity

in the “servers”. Dynamic ad-hoc networks mainly consist of mobile nodes, which

have low storage capacities. The centralized approach is therefore less suitable

for fully distributed ad-hoc networks. With unknown topology and no pre-defined

infrastructure, it is also not possible to establish groups or organize clusters in ad-

vance. The distributed approach seems to be the only suitable approach for ad-hoc

networks. The existing discovery protocols that use the distributed approach are,

however, not very efficient. First, information is often advertised and cached in

space-consuming formats, such as textual, attribute-value pairs, or markup lan-

guages. Second, the question of how much information should be advertised, is so

far not resolved. This is a fundamental question, because it determines the effi-

ciency of the context discovery. When for example more information is advertised

in advance, nodes know more often where to look for information. As a result,

they can query efficiently for information. However, the extra advertisements will

8

also generate more traffic. We thus need to find a balance in the amount of adver-

tised information and query efficiency to obtain a discovery protocol that meets the

required high efficiency.

Therefore, we are looking for a method to support efficient information repre-

sentation and storage for the discovery phase. We aim to develop a multi-hop dis-

covery protocol for fully distributed context-aware MANETs, which provides nodes

an overview of existing context sources, but in the process tries to minimize the

amount of generated traffic and required computational power.

1.3 Design Requirements and Assumptions

From the disparity between the characteristics of dynamic ad-hoc networks and

existing protocols, the design assignment for the development of a new discovery

protocol requires special attention. Those design requirements are addressed below.

• Context-aware networks. Nodes that participate in the network should

have an overview of available context sources around. The new protocol should

provide this information to every node in the network, starting from the mo-

ment when it joins the network.

• Efficient information representation and discovery process. Ad-hoc

networks have limited bandwidth and processing power. Space and traffic

savings are the keywords for the discovery protocol design. Packet sizes should

be small, and frequent packet exchanges throughout the network should be

avoided.

• Simple computation during the discovery process. Battery-powered

nodes in ad-hoc networks cannot afford heavy computation load. The com-

plexity to update information and search for required information should be

small. Even in a high density network with a lot of information updates

and frequent discovery requests, the new discovery protocol should limit the

power-consumption for nodes.

• Decentralized approach. Nodes in MANETs are mobile and mostly battery-

power supplied. They might run out of power or move to other places at any

9

time. We can not rely on centralized discovery approaches where one or few

node(s) keep records or directories of all context information in the network.

The new design should support discoveries in decentralized topologies, where

no node performs as a “server” or a gateway node.

• Discovery in a mobile environment. There are many dynamic factors in

ad-hoc networks. Mobile nodes and wireless communication cause variation of

the location of information in the network. The new design should deal with

those dynamic factors.

• Multi-hop discovery. The larger the query range, the more information can

be found. The new protocol should be capable of locating information multiple

hops away from the querying node.

• Pre-configuration free. Nodes should not need to install or download con-

figuration information to join the network.

The design of the new discovery protocol will enable users to locate requested

information in context-aware ad-hoc networks. We focus on how to discover the

information. In this thesis, we do not touch the topic of actually obtaining the infor-

mation. The protocol design is also independent of the underlying communication

protocols. It can be resided in the transport layer, e.g., on top of TCP or UDP, in

the network layer, e.g., on top of IP, or in the link layer, just above the technology

dependent MAC-sublayer. It should be able to serve any wireless communication

network protocol, such as Bluetooth, Zigbee, etc. We do not consider the choice

of underlying protocol in this thesis. Moreover, we assume that types of context

information are standardized. Each context information type is uniquely known by

a specific name, and all nodes are aware of the standard. In other words, when a

node looks for a type of context information, the other nodes understand what it is

looking for.

1.4 Research Questions

The main objective of this thesis is to propose an efficient context discovery protocol

for ad-hoc networks. The main research question of this dissertation is:

10

How can nodes in a context-aware ad-hoc network find and locate re-

quested context information types fast and precisely, with limited band-

width usage and power consumption?

We should cope with the following research topics to resolve the main research

question during the design.

Research Question 1: Protocol design. How to discover context information

to fulfill the mentioned design requirements?

RQ 1.1: Context representation.

- What is the proper manner to represent context information during

the discovery process?

- How should we record the information availability in the network?

Which nodes, if any, may keep lists or directories of available infor-

mation. What is the best choice for our situation?

RQ 1.2: Discovery method. How to find information in a fully distributed

network? We want to announce and query the information in a manner

that does not generate a large amount of traffic. In general, a fast discov-

ery protocol requires the announcement of detailed context information,

which consumes a significant amount of bandwidth and battery power.

How can we obtain an efficient protocol, which at the same time limits

the consumption of bandwidth and battery power?

Research Question 2: Protocol performance. What is the performance of the

new protocol, especially, in terms of the following aspects?

RQ 2.1: Complexity. What is the complexity of our protocol? It is important

that the protocol itself is not too complex. Complex algorithms may

consume too much power for computation and transmission.

RQ 2.2: Scalability. How does the protocol perform under different network

scale, i.e., small, middle, or large networks, with different network densi-

ties? Does the protocol have a relatively reasonable performance in high

density networks?

11

RQ 2.3: Mobility. How does the protocol react to network dynamics? Can

we still locate information when nodes are moving? Is there any rela-

tion between network performance and speed or direction of the moving

objects? Mobility is one of the important features of MANETs. It is

important to make sure that the protocol is stable and functioning well

in dynamic networks.

RQ 2.4: Vulnerability. What is the vulnerability of the protocol and how can

it be improved? How does the protocol react towards various kinds of

attacks? Can we improve the protocol such that the users are protected

against some or even all of these attacks?

1.5 Approach and Dissertation Structure

To elaborate on the above mentioned research questions, we take the following ap-

proach and organize the thesis as follows. Figure 1.2 gives an overview of the outline

of the thesis, especially in relation to the research questions.

• Chapter 1, Introduction. The current chapter introduces the backgroud and

the motivation of the research in this dissertation, and presents the scope of

this research.

• Chapter 2, Context and Service Discovery Protocols. We first study related

work regarding context and service discovery protocols in MANETs. We argue

why the existing protocols cannot fulfill the requirements mentioned in Sec-

tion 1.3 and why there is a need for a new discovery protocol for decentralized

MANETs.

• Chapter 3, Context Discovery Using Attenuated Bloom Filters. Based on the

requirements posed in Section 1.3 and the related work in Chapter 2, we pro-

pose a novel context discovery protocol, Ahoy. In this chapter, we elaborate

on the detailed protocol design and discuss our design choices. In doing so,

we answer Research Question 1.

12

• Chapter 4, Performance Modeling. An analytical model of Ahoy is established

for a static network. We use the model to optimize the parameter setting of the

system, and we evaluate the performance of Ahoy by comparing it with that of

conventional approaches (so-called proactive and reactive discovery protocols).

Finally, we validate the analytical model with simulations. Chapter 4 therefore

answers Research Question 2.1 and 2.2.

• Chapter 5, Dynamic Connectivity in Mobile Environment. We extend our

analysis to the extra network traffic that is generated in mobile networks.

We observe different scenarios of dynamic connectivity and their influence on

the performance of Ahoy. We use both analytical and simulation approaches.

Again, the performance of Ahoy is compared with proactive and reactive pro-

tocols. Chapter 5 answers Research Question 2.3.

• Chapter 6, Vulnerability Analysis. In this chapter, we analyze the vulnerability

of Ahoy. We study and compare how various attacks affect Ahoy, the proactive

and reactive protocols. Accordingly, we propose countermeasures to avoid such

attacks, or alleviate their impact. Chapter 6 answers Research Question 2.4.

• Chapter 7, Proof of Concept Implementation. Subsequently, we implement

a prototype for Ahoy. In this chapter, we elaborate on the implementation

details. We test the prototype to verify whether Ahoy performs correctly and

analyze the amount of Ahoy traffic as portion of the total amount of traffic.

• Chapter 8, Conclusions and Future Work. Finally, we conclude the thesis and

propose future work.

13

Figure 1.2: The outline of the thesis.

14

Chapter 2

Context and Service Discovery
Protocols

The goal of this dissertation is to design and develop a context discovery protocol

for MANETs, so that devices have an overview of existing context information

types around and find requested context information quickly and efficiently in a

decentralized ad-hoc network. In the literature, a lot of attention has been given

to service discovery rather than context discovery. In this chapter, we describe

the relation between service discovery protocols and context discovery protocols.

Furthermore, we explore existing discovery protocols and show why they are not

suitable for our purpose.

This chapter is organized as follows. We first address the relation between con-

text and service discovery and give an overview of context/service discovery proto-

cols in Section 2.1. Then we introduce briefly existing service discovery protocols for

MANETs in Section 2.2. Finally, we discuss why existing service discovery protocols

can not fulfill our requirements in Section 2.3.

2.1 Overview

In computer science, context refers to the circumstances under which a device is

being used as defined in Section 1.1, whereas a service can be any application (con-

sisting of software and/or hardware) that a user might want to use. Service discovery

is the action to find requested services. Although the concept of context and service

15

16

is different, the methodology to discover them is in essence the same. First, both

context and service can be described in a certain format or template. Secondly, the

discovery of both can be understood as an action of looking for information in the

network. The methods used for service discovery are suitable for context discovery

as well. In this chapter, we refer to the generic aspects of the discovery process when

using the terms service discovery and context discovery.

Context/service discovery protocols encounter the following three fundamental

questions in general:

• How is the context/service information represented?

• Where is the information stored?

• How is the information discovered?

We address these three questions in detail in the remainder of this section.

2.1.1 Information Description

A service may have some attributes, which are the characteristics of the service. For

example, a printer service can have the following attributes: position, resolution,

color, etc. Each attribute can be associated with a value, e.g., the position of the

printer is Room 101. Similarly, a context can also be characterized with context

information types, as we introduced in Section 1.1.

Context/service information can be described into various ways. According to

[56], service information and its attributes can be categorized into the following five

types:

• Textual.

• Attribute-value pairs.

• Hierarchy of attribute-value pairs.

• Markup languages.

• Object-oriented interface.

17

Those forms can define the context/service information in different levels of de-

tail. For example, a context/service can be described with its name in a text string,

or with detailed definition of attributes in Markup languages. Detailed descriptions

normally require larger storage space, which may also consume more processing ef-

fort and communication bandwidth. The choice of description form depends on the

requirements of the applications.

2.1.2 Storage Methods

The existing service discovery protocols (SDPs) utilize the following approaches

to store information: centralized approach, cluster-based approach, and distributed

approach.

• Centralized approach: One or several nodes act as service repositories and store

information about the available services or the directory of services. Nodes

register their services in the service repositories and query them to retrieve

the required information.

• Cluster-based approach: Nodes in the network are grouped into clusters based

on certain policies, such as physical location or services they provide. In a clus-

ter, information can be stored centrally in one node or decentralized in many

nodes, depending on the protocol design. Intra-cluster discovery is supported

by various approaches in different protocols, such as using gateway nodes, or

anycasting to other clusters. We address this in detail in Section 2.2.2.

• Distributed approach: Services are stored everywhere in the network. Nodes

can either advertise and cache the stored information in advance or not ad-

vertise at all, depending on the protocol design. Nodes that need a service

broadcast or multi-cast queries to look for the required service.

In the rest of the chapter, we discuss existing SDPs that can be used for MANETs.

These are categorized by the way they store service information.

18

2.1.3 Discovery Methods

Basically, there are three approaches to discover information: the proactive ap-

proach, the reactive approach, and the hybrid approach.

• Proactive approach: Nodes advertise local services periodically. When one

node receives an advertisement, it stores the services into a table or the location

of the services into a directory. When a node requests a certain service, it

checks the cached table or directory in cache to locate the service.

• Reactive approach: Nodes do not send any advertisement to announce their

service information. Therefore, no node knows where services are available.

They simply broadcast queries to all the nodes in the network, whenever they

look for a service.

• Hybrid approach: The hybrid approach tries to strike a balance between the

proactive and the reactive approaches. Generally, advertisements are sent to

a subset of nodes and/or with a limited frequency. This can help nodes to

locate required services and reduce the traffic for querying.

The proactive and reactive approaches are conventional discovery approaches,

which have the drawback that they flood packets over the network [56]. In proactive

protocols, nodes need to send frequent advertisements throughout the network to

keep the cached services up to date. This is especially the case when services (nodes)

are mobile and change locations all the time. As a result, the proactive approach

is not suitable for highly dynamic networks. In contrast, in the reactive approach,

nodes flood the network with queries. The amount of traffic is in this case highly

related to the query frequency. Often, the reactive approach is used in dynamic

networks where frequent changes in network topology makes caching the location

of existing services inefficient and costly. The choice of reactive versus proactive

approach, to a large extent, depends on the network structure, the query rate, and

on the interaction with the underlying routing protocol [37].

Due to the drawbacks of the two conventional approaches, many authors have

proposed a hybrid approach, to balance between the traffic due to advertisements

and queries, and to avoid the flooding of messages throughout the network. The ap-

proaches and policies that are used for this purpose, are different in various discovery

19

protocols. We address this in detail when we introduce existing service discovery

protocols for MANETs below.

2.2 SDPs for MANETs

In this section, we group the existing service discovery protocols into three categories

based on how services are stored in the network introduced in Section 2.1.2 and

briefly introduce how they work.

Particularly, we study only the existing SDPs for MANETs, because in this thesis

we focus on discovery in MANETs where the network topology is neither fixed nor

stable. Prominent SDPs, such as Jini [74], Splendor [85], Salutation [77], UPnP

[78], JXTA [58], Service Location Protocol (SLP) [30], are designed for enterpriser

networks or wide-area networks, which rely on fixed or stable network structures.

Therefore, these discovery approaches cannot be applied for our purpose and are

out of our interest.

2.2.1 Centralized approach

Bluetooth Service Discovery Protocol [7] defines a service record as the entire list of

attributes of the provided services. This record is stored in an SDP server. Clients

can obtain the service information via SDP servers. A node can act both as a SDP

server and as a client, depending on whether it provides or requests services.

In CDS [26], services are described by attribute value pairs and registered in a

set of nodes called Rendezvous Points (RPs). A hash function is applied to obtain

each attribute-value pair, and the hashed results are registered. Queries are only

directed to the relevant RPs. A load balancing matrix of RPs is used to avoid

flooding queries to one node.

Kozat and Tassiulas proposed a directory-based discovery mechanism DSDP

[47] using backbone structures. A set of relatively stable nodes are selected to form

a dominating set. Based on this dominating set, a mesh network with a virtual

backbone is constructed. Nodes in the dominating set act as directory agents (DAs)

and process services requests from nodes.

20

FRODO (originally named as SDP@HA) [75] is a service discovery protocol

designed for the home environment. It uses a typical centralized architecture, where

one node in the network is elected as “central”. This node stores the service Lookup

table, and other nodes query the “central” whenever they look for any information.

Another node is assigned as “backup”, which will take over the responsibility of the

“central” if it fails.

Varshavsky [80] coupled the discovery protocol with the underlying routing pro-

tocols (DSR and DSDV) and so developed a cross-layer discovery protocol. Two

fundamental components are defined to facilitate discovery: a service discovery li-

brary (SDL) and a routing layer driver (RLD). Known servers are stored in a service

table in the SDL. Clients look for related servers by checking the SDL. The SDL

instructs the RLD to disseminate discovery requests for specific services and routes,

and to periodically disseminate advertisements for specific services.

The centralized approach can act as either a proactive protocol or a reactive

protocol, depending on whether the servers announce their existence in advance. If

servers broadcast their existence frequently, and the nodes know where to find the

information, it can be considered a proactive protocol. Otherwise, nodes need to

look for the servers every time when they request information. In that case, it is a

reactive protocol.

Similar to the protocols that maintain central directories, such as Jini, Saluta-

tion, etc., these protocols allow networks to store their information storage in few

“servers”. The network structure, thus, still needs some form of hierarchy in which

the server nodes are more important than the nodes that are merely clients.

2.2.2 Cluster-based approach

In Intentional Naming System (INS) [1], services are defined in hierarchical attribute-

value pairs. Nodes are grouped into clusters, where nodes in the same cluster are

aware of all information from each other. Usually a service directory is used to

support inter-cluster queries.

The service ring protocol [45] is a typical clustered hierarchical approach. Nodes

are grouped into rings, if they are physically close to each other and offer similar

21

services. Each service ring has a Service Access Point (SAP), which stores informa-

tion of the ring. Higher-level rings can be constructed by SAPs, with higher-level

SAPs to store services they provide. Nodes can query SAPs for intra- and inter-

ring service discovery.

The LANES protocol [45] groups nodes into lanes. Nodes in the same lane

broadcast their services and cache them. Whenever a query to certain services

cannot be found in the same lane, the query is anycast to other lanes.

Generally, cluster-based protocols proactively maintain routing and service in-

formation inside a zone, while using a reactive search approach between the zones.

They can be considered as hybrid service discovery approaches, in which clear in-

formation storage structures need to be defined in advance.

2.2.3 Distributed Approach

DEAPspace [62] supports single-hop discovery in short-range wireless systems. Each

node keeps a list of all services in the network. The information is spread when a

node broadcasts its services, and the list of other known services, to the neighbors.

The neighbors use this information to enlarge their lists, and they broadcast it to

their neighbors. In this way, all the information is distributed through the network.

The Group-based Service Discovery protocol (GSD) [12] is a distributed service

discovery protocol for MANETs. Services are described based on DARPA Agent

Markup Language (DAML+OIL). Advertisements are sent periodically to nodes

within a maximum number of hops. Each node keeps a list of local and remote

services that a node has received from advertisements. Services are also grouped to

ease discoveries by selectively forwarding queries.

Helmy [36] proposed a zone-based resource discovery protocol. Every node has

a “zone”, which include all the nodes that are less than a certain number of hops

away. It maintains available resource information and routes to all nodes in the

zone. It also knows several contact nodes outside the zone. Via the contact nodes,

the node is able to discover resources outside its zone.

Lenders et al. [49] proposed fully distributed service discovery protocols. Service

instances periodically broadcast advertisements containing their services within a

certain scope. Nodes receive the broadcast, cache the information for limited time,

22

and aggregate advertisements into one single packet and propagate it. Meanwhile,

a “potential” is assigned to the cached information, based on the distance to the

service provider. When a node looks for certain services, it checks the cache and

forwards the query only to the neighbors with the highest “potential”.

Allia [68] uses peer-to-peer caching of services between nodes. In Allia, every

node broadcasts its local services to nodes in its vicinity, and caches received broad-

casted services from neighboring nodes. Allia defines the concept of “alliance” of a

node as a set of nodes which local services are cached by that node. When a node

queries for a certain service, it looks at its local service list and its local cache. If

no match has been found, it checks the caches of members of its “alliance”. Nodes

that receive the query decide to process it or drop it, based on a predefined policy.

Frank and Karl [24] proposed a cross-layer discovery protocol, which is bounded

by the underlying routing protocol AODV. Nodes announce local services within a

certain scope and cache the ones they receive. Negative service announcements are

used to remove cache entries in corresponding nodes. When a node queries a certain

service, a routing packet with the description of the queried service is created. The

packet is propagated as a normal AODV routing packet. If a queried node knows

the matching service provider, it fills in the destination address into the packet.

The adaptive service discovery model [59] uses a combination of a proactive and

a reactive protocol to avoid flooding of advertisements or queries in the network.

Nodes control the ratio between the bandwidths used for advertisements and queries.

This is done by regulating the frequencies of advertisements and queries. Nodes

observe the frequency of advertisements and queries in the network, and based on

these observations, determine whether or not to send an advertisement or a query.

Konark [35] is a service discovery and delivery protocol designed specifically for

ad-hoc, peer-to-peer networks. Services are described in XML. Each node main-

tains a tree-based structured service registry in its own SDP manager to store local

services, and services that are discovered or received via advertisements within a

certain lease time. Any node can query fixed groups of nodes for information. In

response to queries, a node which contains the required information advertises (part

of) its registry. The services in the received advertisements can also be cached into a

local registry. This protocol is a combination of a proactive and a reactive protocol.

Nodes do not send advertisements actively, unless there is a match with a query.

23

Discovered information is cached in nodes for future use.

HESED [83] is a service discovery protocol based on multicast query and reply.

After a client multicasts its query, all matching service providers multicast their in-

formation to all nodes, which in turn cache this service information. Clients evaluate

and utilize the cached information, thereby reducing the number of queries. HESED

also eliminates the effect of asymmetric links, providing reliable connections that can

be utilized by the forwarding algorithms. However, intermediate nodes do not send

replies even if they have some knowledge that is related to the query.

DEAPspace is a typical proactive protocol. Konark and HESED are two reactive

protocols which do not actively advertise local services to other nodes. In both pro-

tocols, queries are sent within a certain range, and requested information is cached

for future use. These protocols thus enhance query efficiency and reduce query

traffic, but they require sufficient storage space for nodes to cache the information.

The other protocols use a hybrid discovery approach, which contains both adver-

tisements and queries. Basically, they use two approaches to avoid large amounts of

advertisements and queries. In the adaptive service discovery model [59], the adver-

tisement and query frequency is regulated. The more popular approach, however, is

to advertise service information within a certain range and to cache the information

in the advertisements. Nodes can easily locate existing services within a certain

range without querying the entire network, but like the reactive protocols, Konark

and HESED, they require that nodes have enough storage space and broadcast extra

advertisements.

2.3 Discussion

We summarize the discussed protocols in Table 2.1.

Compared with the distributed approach, the centralized approach and the

cluster-based approach are more centralized, because they use servers, service ac-

cess nodes, etc. In ad-hoc networks, nodes are often mobile and battery-powered.

There are frequent changes of network topology and limited bandwidth, and nodes

have limited computational and storage capacities. Given these characteristics, we

suggest that we can only obtain a robust discovery protocol when the network has

no hierarchical structure. This implies that information should be distributed in a

24

decentralized way, and that, in principle, each node is equally important. In this

way, there is little danger that nodes are overloaded, or that the discovery protocol

will break down when nodes are disconnected from the network.

We therefore suggest that the distributed approach is the only suitable approach

for dynamic ad-hoc networks. The three discovery approaches, proactive, reactive,

and hybrid, can all be applied in the distributed approach. The drawback of fully

distributed networks is that the information storage is not very efficient. This means

that relatively much traffic will be generated in the discovery process. Clearly, the

proactive and reactive approach have the greatest risk of flooding the network with

packets. Hybrid protocols are probably most efficient in reducing traffic. In that

sense, regulating advertisement and query frequencies, such as in the adaptive service

discovery protocol, could be a good solution for a static network where there are few

requests for services. However, when network topologies change frequently and/or

there is a high demand for services in the network, such a discovery protocol may

be less efficient.

The caching of existing services is also a good way to reduce query traffic. It is

is used in many protocols (GSD, Allia, Konark, HESED, etc.). Caching available

information within a limited range is also in line with our requirement of context-

aware networks in Section 1.3. Newly arrived nodes need to obtain an overview of

available context sources which surround them. To exchange and cache available

context sources is a good manner to facilitate nodes with the knowledge of available

context sources which is also the purpose of context-aware networks. Moreover, the

amount of exchanging and caching can be constrained to a limited range (i.e. certain

number of hops), as nodes only need to be aware of context sources in the direct

environment.

There are three key questions that need to be taken care of in this respect:

1. How often, how far, and how to advertise services/context?

2. How to cache services/context?

3. Which level of detail of the service/context information is needed during the

discovery phase?

The existing protocols focus on resolving the first two questions. However, we

believe that the third question may be the most fundamental one. The service

25

description format is directly related to the size of the advertisement packets and

to the storage space used for caching. This is crucial, since the nodes in our ad-hoc

networks have limited bandwidth and storage space. Services are currently often

represented in textual, attribute-value pairs, hierarchy of attribute-value, Markup

languages, or object-oriented interfaces [56], which can contain a lot of information,

but also consume large storage space. However, not all this information is necessary

for service discovery. For example, suppose that a node looks for the “temperature

in Room A”. It is only interested in finding a node which provides the service of

“temperature in Room A”, but not in the detailed attributes of the service, such

as “age”, “position”, and “brand” of the thermostat. It is possible that the node

will request information about the “age” in the future. If the level of detail of the

advertised context is limited, it may have to send extra queries in the future.

In short, to save network traffic in service/context discovery, it is essential to

study how services or contexts can be represented in a space-efficient manner, but

with enough detail to limit the amount of queries during the discovery phase.

In this dissertation, we aim to study and find such an information representation

method, which enables us to save storage space and network traffic during the dis-

covery process. Using this information representation method, we will design and

develop a new context discovery protocol for context-aware MANETs. As we ar-

gued above, the new protocol will use a hybrid distributed approach in which nodes

advertise and cache available context information types within a limited range.

26

Table 2.1: SDPs for MANETs.

Protocols Description Storage method
Discovery
method

Bluetooth SDP [7] attribute-value centralized reactive
CDS [26] attribute-value centralized proactive

DSDP [47] - centralized reactive
FRODO [75] - centralized proactive

Varshavsky et al.
[80]

- centralized hybrid

INS [1]
hierarchical

attribute-value
cluster-based hybrid

The service ring
protocol [45]

- cluster-based hybrid

Lanes [45] - cluster-based hybrid
DEAPspace [62] attribute-value Distributed proactive

GSD [12] Markup Language Distributed hybrid
Helmy [36] - Distributed hybrid

Lenders et al. [49] - Distributed hybrid
Allia [68] - Distributed hybrid

Frank and Karl [24] - Distributed hybrid
Adaptive service

discovery protocol
[59]

- Distributed hybrid

Konark [35] Markup Language Distributed reactive
HESED [83] - Distributed reactive

Chapter 3

Context Discovery Using
Attenuated Bloom Filters

Ad-hoc networks are distributed wireless networks in which most nodes are mobile,

and have limited power supply. When a node searches for some context information,

that information can be available locally or in other nodes that are one or multiple

hops away. Local information discovery does not consume network bandwidth, and

is therefore not considered in this thesis. We focus on multi-hop context discovery

in ad-hoc networks. The most important question is how to find and locate the

required information. Announcing context information, querying, and determining

the location of the context source might generate a lot of traffic. In a high-density

network, such traffic can be rather heavy. As a result, the nodes consume quite

an amount of power and bandwidth for querying. An efficient context discovery

mechanism needs to be developed for such situations.

In this chapter, we propose a novel approach to discover context information

in ad-hoc networks, which is named Ahoy. Ahoy is a decentralized space-efficient

discovery method, which reduces network traffic during the discovery process. It

represents context information into attenuated Bloom filters for advertising, and

supports a directional query mechanism.

There are three phases in Ahoy: context exchange, context query, and mainte-

nance and update. In Section 3.1, we first introduce the concept of Bloom filters. In

Section 3.2, we briefly introduce the Ahoy protocol. In Section 3.3, 3.4, and 3.5, we

describe the three phases of the protocol in detail, and we summarize in Section 3.6.

This part of the work has been published in [50].

27

28

3.1 Bloom Filters

According to the discussion of Section 2.3, the first phase of context discovery is to

locate the nodes which provide the context information that we are looking for. For

reducing traffic and facilitating context-aware networks, it is a good idea to advertise

some available information a priori. But it is not necessary to advertise all the

details. Instead, during the discovery phase, nodes are only interested in what types

of context information are available in their environment. They can retrieve the

details later when necessary. For this purpose, we need an efficient way to represent

context information types and support a traffic-saving context discovery protocol.

Exchanged and cached context information may be compressed to a smaller size,

but when a node queries for a certain context information type, it should still be

able to learn from the cached information whether or not the information exists.

To achieve this, we propose to use Bloom filters (BFs) to represent context

information types. Bloom filters [6] have been proposed in the 1970s to represent

sets of information in a simple and space-efficient way and to test which information

belongs to the set. They are suitable for compressing information without losing

much detail. A Bloom filter can aggregate a set of context types into a bit array, and

it can provide the existence of information with high confidence. There is a chance

of false positives, but not of false negatives. Information can be easily inserted into

a BF, but is difficult to be removed from it. In the remainder of this section, we

introduce the concept of Bloom filters.

3.1.1 Basic Concept of Bloom filters

Bloom filters are used to present a set of elements. A Bloom filter B is a bit array of

w bits, where the individual bits will be denoted as Bi (1 ≤ i ≤ w). For an empty

set, all bits in the Bloom filter are set to 0:

Bi(∅) = 0 (1 ≤ i ≤ w). (3.1)

There are b independent hash functions, Hj (1 ≤ j ≤ b), which are used to code the

elements. The results of the hash functions are over a range {1, . . . , w}. The bit

positions which are corresponding to hash results are set to 1. So, the Bloom filter

29

of an element s can be represented as follows:

Bi(s) =

{
1, ∃jHj(s) = i (1 ≤ j ≤ b),

0, otherwise.
(3.2)

Two basic operations on Bloom filters are union and intersection. Operation

union actually combines multiple sets into one single set. It can be simply imple-

mented by a bitwise OR of the corresponding Bloom filters of those sets. The

outcome is an aggregated Bloom filter representing a union of multiple sets. Op-

eration intersection obtains the common elements from multiple sets. It can be

implemented by a bitwise AND of all corresponding filters of the sets. The out-

comes is a filter representing an intersection of multiple sets.

For any two set S1 and S2 and their corresponding Bloom filters B(S1) and

B(S2), the union operation can be denoted as:

B(S1

⋃
S2) = B(S1)|B(S2). (3.3)

Likewise, the intersection operation can be represented as:

B(S1

⋂
S2) = B(S1)&B(S2). (3.4)

Figure 3.1(a) and Figure 3.1(b) show examples of the union and intersection

operations respectively.

0 1 0 0 1 0 0 1

1 0 0 0 1 0 1 0
1 1 0 0 1 0 1 1

B(S1)
I

B(S2)
=B(S1US2)

(a) Union

0 1 0 0 1 0 0 1

1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 I&

B(S1)

B(S2)
=B(S1∩S2)

(b) Intersection

Figure 3.1: An example of union and intersection.

These two operations are very practical and essential for Bloom filters. Operation

union can be used to add elements to a filter or to gather information from multiple

sources into one filter. Operation intersection can check whether information in two

filters (for example a query and stored information) matches with each other. We

will address these operations further in the next session.

30

3.1.2 Two Basic Functions

Bloom filters support two fundamental functions: insert and query. Note that a

remove function is not defined for Bloom filters. Below we will introduce the insert

and query functions.

Insert

To insert one element s into a filter, the element first needs to be hashed by b hash

functions. Each hash function returns a value, which is associated with a bit position

in the filter. This corresponding bit position is set to 1. Inserting is the action of

(3.2), continued with the union function (3.3). Table 3.1 presents the pseudo code

for the above mentioned process.

Table 3.1: Pseudo-code for inserting a context information type “s” into a
Bloom filter.

1 Insert BF (s){ % insert “s” into Bloom filter

2 for j = 1 to b { % apply b hash functions

3 i = Hj(s); % obtain hash result i

4 Bi = 1; % set bit position i to 1

5 }
6 }

Query

To query the presence of one element s is to examine whether s is an element of the

set S. This function can be performed by the operation intersection. The element s

is again hashed by b hash functions, in accordance with (3.2). The hash results are

b bit positions which are set in a filter B(s). Then, we check the intersection of the

two filters B(s) and B(S). If the intersection equals B(s), the element s belongs

to the set S. Otherwise, s is considered not to be available in the set. This can be

expressed with the following equation:

s ∈ S =

{
true, B (S) &B (s) = B (s) ,

false, otherwise.
(3.5)

31

Table 3.2 presents the pseudo-code for querying a context information type “s”.

Table 3.2: Pseudo-code for querying a context information type “s”.

1 Query BF (s){ % Query “s”

2 for j = 1 to b { % apply b hash functions

3 i = Hj(s); % obtain hash result i

4 if Bi == 0 { % if any position is 0

5 return(Not Exist(s)); % return that “s” does not exist

6 break; % stop the whole querying process

7 }
8 }
9 return(Exist(s)); % return that “s” exist

10 }

Example

Let us assume a 6-bit Bloom filter (w = 6), using two different hash functions H1

and H2 (b = 2). There are two information types “location” and “temperature”

available, which need to be encoded with the filter. Suppose, we apply H1 and H2

over the information types and obtain:

H1(“location”) = 2;

H2(“location”) = 4;

H1(“temperature”) = 3;

H2(“temperature”) = 6.

Therefore, the Bloom filters B(“location”) and B(“temperature”) can be represented

as the filters in Figure 3.2 and Figure 3.3, respectively. The union of two filters is

shown in Figure 3.4. When a query for “location” or “temperature” is generated,

the filter will give a positive answer to it.

location

1 2 3 4 5 6
0 1 0 1 0 0 0 1 0 1 0 0

temperature

1 2 3 4 5 6
0 0 1 0 0 1 0 0 1 0 0 1

union 0 1 1 1 0 1

presence

1 0 0 1 0 0 0 0 0 1 0 0

humidity

0 1 0 0 0 1

Figure 3.2: The Bloom filter B(“location”).

32

location

1 2 3 4 5 6
0 1 0 1 0 0 0 1 0 1 0 0

temperature

1 2 3 4 5 6
0 0 1 0 0 1 0 0 1 0 0 1

union 0 1 1 1 0 1

presence

1 0 0 1 0 0 0 0 0 1 0 0

humidity

0 1 0 0 0 1

Figure 3.3: The Bloom filter B(“temperature”).

B(“location”)

B(“temperature”)

0 1 0 1 0 0

0 0 1 0 0 1
0 1 1 1 0 1 =B(“location”,“temperature”)I

Figure 3.4: The Bloom filter contains both context information types“location”
and “temperature”.

False Positives

When several elements are inserted into one filter, multiple bits are set to 1. The

combination of those bits can represent not only the available elements, but also

non-existing elements. When a node queries a Bloom filter to check the presence

of such unavailable elements, the filter returns a positive reply which is not correct.

We call such an answer a false positive answer [8].

Let us, for example, assume that “presence” and “humidity” information can be

hashed into:

H1(“presence”) = 1;

H2(“presence”) = 4;

H1(“humidity”) = 2;

H2(“humidity”) = 6.

The filter in Figure 3.4 definitely does not contain “presence” information ({1,4}), as

B1 equals 0, as is shown in Figure 3.5. However, when a node queries for “humidity”,

it returns a positive reply, because the bits B2 and B6 are set to 1, as shown in

Figure 3.6. In the example, these bits are set by “location” and “temperature”,

while “humidity” is actually not available. When we query “humidity” to the filter,

it gives a false positive answer.

When there are more information types encoded in a single filter, the probability

of false positives becomes higher. This reduces the accuracy of the query results.

However, we can reduce the false positive probability by using a larger filter, which

at the same time requires larger storage space. We will address the false positive

33

B(“presence”)

0 1 1 1 0 1

1 0 0 1 0 0
0 0 0 1 0 0

B(“location”,“temperature”)
≠B(“presence”)I&

Figure 3.5: When query “presence” information, the filter gives a negative an-
swer.

B(“humidity”)

0 1 1 1 0 1

0 1 0 0 0 1
0 1 0 0 0 1 =B(“humidity”)

B(“location”,“temperature”)
I&

Figure 3.6: When query “humidity” information, the filter gives a false positive
answer.

probability and its relation with the size of the Bloom filter in detail in Section 4.2.3.

Note that Bloom filters do not give false negatives. When the query result is nega-

tive, the requested element is sure not belong to the set.

Applications of Bloom filters

Bloom filters were originally designed for hyphenating words in dictionaries [6]. As a

space-saving data structure, they are nowadays used to enhance membership queries

for sets of information, such as for spelling checks and indexing. A famous appli-

cation is Google BigTable [13]. Bloom filters have been used to reduce database

lookups for differential files [29, 60], and have also been used in various network

applications, such as distributed caching, P2P/overlay networks, resource routing,

packet routing, and measurement infrastructure [8]. Recently, researchers have ex-

plored the application of Bloom filters to ad-hoc networks, for speeding-up cache

lookups [64], group management [55], hotspot-based trace back [3], and neighbor

solicitation [61].

Service discovery is one of the applications of Bloom filters [8]. Bloom filters

are also used as an efficient approach for lossy aggregation and query routing for

a Secure Service Discovery Service in [18], where services are locally stored with

Bloom filters to speed up queries.

34

3.1.3 Attenuated Bloom Filters

More recently, Rhea and Kubiatowicz introduced the concept of attenuated Bloom

filters (ABFs) in [69] to enhance searching information in peer-to-peer networks.

An ABF consists of layers of single Bloom filters. They can be used to provide

probabilistic location and routing to enhance querying.

Here, we apply the idea of ABFs to represent context information types for

different hop-distances. The number of layers is defined as d. The width of the

filter is again denoted by w. From top to bottom, the filter represents the presence

of information from close by to further away. In contrast to [69], we define that

the first layer (layer 0) of the filter contains the context type information for the

current node, while the second layer (layer 1) contains the information of all nodes

one hop away. Layer i of an ABF (0 ≤ i ≤ d− 1) aggregates all information about

context types within i hops away, where layer i is also called the (i+1)th layer. The

depth of the ABF, d, also stands for the total propagation range of the advertised

information. Figure 3.7 gives an example of an ABF of a node, with d = 3 and

w = 6, where the node contains the information “humidity” locally, and can reach

the information “humidity” and “temperature” within one hop, and can reach the

information “humidity”, “temperature” and “presence” in two hops.

0 1 0 1 0 0
0 1 1 1 0 1
1 1 1 1 0 1

d = 3

w = 6 bits

Layer 0: “humidity”
Layer 1: “humidity”, “temperature”

Layer 2: “humidity”, “temperature”, “presence”

Figure 3.7: A basic 3-layer 6-bits attenuated Bloom filter (ABF) of which layer
0 contains the information “humidity”, layer 1 contains information
“humidity” and “temperature”, and layer 3 contains the information
“humidity”, “temperature” and “presence”.

Attenuated Bloom filters (ABFs) are space saving data structures to store infor-

mation. They represent information into a limited number of layers of bit arrays.

Information is grouped in layers based on a notion of distance (number of hops, in

our case). The query of certain information can be done quickly by an intersection

35

operation.

The accuracy of context representation decreases with the number of hops. That

is because a node usually can reach more nodes when the number of hops increases.

Therefore, more information is stored in the deeper layers, which results in filters

with more 1s’ set. As a result, there is a higher false positive probability which

decreases the location accuracy of elements. For example, layer 0 of the ABF pre-

sented in Figure 3.7 contains only one element and layer 2 contains three elements.

As a result, there are more 1s’ set in layer 2 than in layer 0 and the probability to

have a false positive is higher in layer 2 than in layer 0.

The features of ABFs are well suitable for supporting a discovery mechanism.

Based on this idea, we propose a fully distributed and lightweight context discovery

protocol using attenuated Bloom filters for ad-hoc networks, named Ahoy, below.

3.2 Protocol Overview

Generally, there are three phases in context discovery:

• Context exchange: nodes announce the information regarding to their con-

text information types to the other nodes, when a new network is established

or new nodes join an existing network.

• Context query: nodes request other nodes for information and try to locate

the required information.

• Context maintenance and updates: nodes keep on updating the latest

information regarding to their context types to the others.

The above three phases are essential, but not compulsory. A discovery protocol

can consist of one or more of these phases, as long as nodes can find what they

need. For instance, as introduced in Section 2.1.3, the traditional proactive pro-

tocol has all three phases. All nodes broadcast to the other nodes what context

information they possess. When one node queries information, it directly sends the

query to the node which has the context information type. Nodes need to update

their information to keep the others informed about the latest information. In a

36

contrast, traditional reactive protocol only has the context query phase. There is

no information exchanged a priori and also no update afterwards. Nodes only query

(part of) the network whenever they need information.

The proactive and reactive discovery protocols have both advantages and draw-

backs. In the proactive protocol, nodes know where to find which information.

There is no extra network traffic consumed to look for the location of the required

information. However, this can only be achieved when information is exchanged

beforehand, and is constantly kept up to date. This may generate large amounts of

network traffic, and it requires extra memory to store the exchanged information,

especially, in dynamic networks where frequent updates are required. The proac-

tive protocol is therefore mainly suitable for a static network where information is

queried frequently. On the other hand, in the reactive protocol, nodes have no idea

about the information availability nor the distribution of information in the net-

work. Nodes need to flood queries in order to find requested information. However,

information in the network does not have to be updated. Therefore, this approach is

suitable for a highly mobile network in which information is queried only incidently.

Ahoy is a discovery protocol which tries to strike a compromise between the proac-

tive and reactive protocols and aims to save network traffic, node memory, and com-

putational power in mobile ad-hoc networks. Ahoy contains all three phases: context

exchange, context query, and context update and maintenance. It pre-broadcasts

some available information within a certain range. Instead of broadcasting the en-

tire information into the network, Ahoy utilizes attenuated Bloom filters to represent

the availability of the context information types to neighboring nodes. It provides

the availability and direction to the available information with a certain accuracy

that decreases with distance to the source due to increased probability of false pos-

itives. Those space-saving filters are only broadcasted when there is a change in

the network structure or in the existence of information. Meanwhile, queries are

only forwarded to the nodes which most probably contain the required information

based on positives in various layers of ABFs received from neighbors, instead of to

all nodes. It can thus avoid flooding of information during exchange and mainte-

nance, as may be the case in the proactive protocol, whereas it also avoids flooding

of queries, as can be the case in the reactive protocol.

37

Figure 3.8 illustrates the relation between the amount of traffic generated and

the accuracy of the advertised information in the proactive protocol and Ahoy. The

reactive protocol is not presented here, since there is no advertisement. The height of

the blocks represents the amount of traffic, and the darkness of the color represents

the accuracy. The amount of traffic generated by the proactive protocol increases

with the number of hops. Therefore, we obtain a shape in the form of a fan, as shown

in Figure 3.8. However, the accuracy of the advertised information stays the same,

as the color of the shape does not change while the number of hops increases. In

Ahoy, the amount of traffic stays constant even when the number of hops increases,

visualized as a rectangular shape in Figure 3.8(b). However, the accuracy decreases,

shown by the fading color in Figure 3.8(b) from left to right, when the number of

hops increases.

0 Number of hops

Traffic load

(a) The proactive protocol (b) Ahoy

Figure 3.8: Visualization of the amount of traffic and accuracy of the advertised
information by the proactive protocol and Ahoy. The height of the
blocks represents the amount of traffic. The smaller the height, the
less traffic there is. The length of the blocks represents the number
of hops, starting from 0. The darkness of the color represents the
accuracy. The darker the color, the more accurate the advertised
information.

We describe in detail how Ahoy works in the remainder of this chapter, and

evaluate the performance of Ahoy in Chapter 4, 5, and 6.

38

3.3 Context Exchange

During context exchange, nodes learn about the existence and the location of infor-

mation in reach. ABFs are used to store context type information. Information is

hashed into Bloom codes and filled in the ABFs. ABFs represent the information

layer by layer. Layer i contains the related information i hops away. ABFs are

aggregated and distributed through the network. After several exchanges between

neighboring nodes, each node has updated ABFs, which indicate which information

is in which directions within a certain number of hops. In the following part of the

section, we first introduce the fundamental operation, context aggregation. Then,

we continue with the details of context exchange and discuss the design choices we

encounter.

3.3.1 Context Aggregation

Context aggregation is a fundamental operation on attenuated Bloom filters, which

is used for context exchange in Ahoy. It is used to combine information from a node

itself and from its neighbors. The outcome of context aggregation is an attenuated

Bloom filter which contains all the information that the node can reach. This final

ABF is the outgoing ABF of the node, which is broadcasted to its neighbors.

Context aggregation is the action to combine incoming attenuated Bloom fil-

ters from neighboring nodes and an ABF that contains local context information

types of the node itself.

The first layer of this new outgoing filter should be filled with the local con-

text information from the node itself. The filters from the neighbors are shifted

one layer down. The new filter represents the union of the shifted filters. Ta-

ble 3.3 presents the pseudo-code for the operation. Its arguments are the local filter

(filter local), received filters from the k neighbors (filter in[1, ..], filter in[2, ..],

..., filter in[k, ..]), and the depth d of the filters. The first layer (layer 0) of the

resulting filter (filter out) contains the first layer of the local filter (filter local).

Subsequent layers of the resulting filter are constructed by applying an OR operation

on bits of the shifted incoming filters and its local filter. Note that the last layer of

the incoming filters is not used and will be discarded. As a result, the first layer of

39

filter out (layer 0) represents the local information, the second layer contains the

information from direct neighbors, and the third layer covers the information two

hops away, which can be reached via direct neighbors, etc.

Table 3.3: Pseudo-code for ABFs aggregation.

1
aggregation (filter local, filter in[1, ..], filter in[2, ..], ..., filter in[k, ..], d)
{

2 % The first layer of the outgoing filter is the first layer of local filter

3 filter out[0] = filter local[0];
4 % Subsequent layers of the outgoing filter are constructed by shifting the incoming

5 % filters one layer down,and applying an OR operation on corresponding bits.

6 for i = 1 to (d− 1) {

7
filter out[i] = filter local[i]|filter in[1, i − 1]|filter in[2, i −

1]|...|filter in[k, i− 1];
8 }
9 return filter out % return the new filter

10 }

Figure 3.9 exemplifies the context aggregation operation for a node with two

neighbors. In this case, no local information is duplicated into the lower layers of

filter local, which therefore consist of 0s. Context duplication is addressed further

in detail in Section 3.3.3. In this example, each node has an ABF with 8 bits, i.e.,

width w = 8 and 3 layers, i.e., depth d = 3. The node uses two independent hash

functions, i.e., b = 2 to encode its local context sources “temperature” and “humid-

ity” into {2,8} and {2,5} respectively. The context information type is represented

in filter local, as shown in Figure 3.9. When the node receives the incoming fil-

ters filter in[1, ..] and filter in[2, ..] from its neighbors, it shifts the received filters

one layer down and discards the last layer of those filters. Thus, filter in[1, ..]′

and filter in[2, ..]′ are obtained. We perform a logical OR operation on each set

of corresponding bits of filter local, filter in[1, ..]′, and filter in[2, ..]′ to obtain

filter out. filter out is the ABF that the node broadcasts to its neighbors.

40

1 0 0 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0

0 1 1 0 1 0 0 0
0 1 1 0 1 1 0 0
0 1 1 1 1 1 0 1

0 1 0 0 1 0 0 1
1 1 1 1 1 0 0 1
1 1 1 1 1 1 0 1

1 0 0 1 1 0 0 0
1 1 1 1 1 0 0 0

0 1 1 0 1 0 0 0
0 1 1 0 1 1 0 0

0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

filter_in[2,..]

filter_in[2,..]’

filter_in[1,..]

filter_out

filter_in[1,..]’

filter_local

shift shift

|

Notation:
Shift: shift all the received filters one

layer down, and discard the last
layer.

|: perform the logical OR operation on
each set of corresponding bits.

Figure 3.9: An example of ABFs aggregation without duplication.

3.3.2 Context Exchange

Every node stores two kinds of ABFs: incoming ABFs from each direct neighbor

and an aggregated outgoing one. Whenever a new network needs to be established,

which is the case when the Ahoy system is initiated, every node generates an ABF

with its local information and broadcasts it. Each broadcast is identified with an

generation identity, GID. In this first ABF, the first layer contains the local context

information types, and the other layers are either blank or contain the same local

information as the first layer, depending on whether we perform context duplication

or not (please refer to Section 3.3.3 for more details). A timer is used for sending

out keep-alive messages, which is explained in more detail in Section 3.5.

All nodes follow the 3 steps that are introduced below when they receive an

ABF.

Step 1: When nodes receive ABFs from their neighbors, they store the ABFs.

Every node stores the latest incoming ABFs for each neighbor. If one of the newly

41

received ABFs is different from the former one, the node updates the out-dated filter

with the latest version.

Step 2: Nodes perform “aggregation” operation over all the incoming filters,

as elaborated in Section 3.3.1, when they perform an update. The outcomes of

“aggregation” are represented by the outgoing ABF.

Step 3: Nodes broadcast the updated outgoing ABFs, if the outgoing ABF has

changed as a result of Step 2.

A node automatically stops this when no more updated ABFs are received from

neighbors. By then, it has a clear overview of the present context information types

around.

This procedure is also applied to brand new nodes that start to participate in

an existing network. Table 3.4 depicts the related pseudo code of the functions for

initialization, and receiving and updating ABFs.

42

T
ab

le
3.

4:
P

se
u
d
o-

co
d
e

fo
r

in
it

ia
li
za

ti
on

,
an

d
re

ce
iv

in
g

an
d

u
p

d
at

in
g

A
B

F
s.

1
in

it
ia
l
{

%
in

it
ia

li
za

ti
o
n

o
f

a
n

ew
n

o
d

e

2
lo
ca
l
A
B
F

=
in
it
A
B
F

(a
ll
lo
ca
l
in
f
or
m
a
ti
on

);
%

g
en

er
a
te

th
e

lo
ca

l
A

B
F

3
ow
n
A
B
F

=
a
g
g
re
g
a
te

(a
ll
A
B
F
s)

;
%

g
en

er
a
te

th
e

o
u

tg
o
in

g
A

B
F

b
y

a
g
g
re

g
a
ti

n
g

a
ll

A
B

F
s

4
G
I
D

=
1
;

%
se

t
g
en

er
a
ti

o
n

ID

5
se
n
d
A
B
F

(o
w
n
A
B
F
,G
I
D
,a
ll

);
%

b
ro

a
d

ca
st

th
e

o
u

tg
o
in

g
A

B
F

6
ti
m
er

=
k
ee
p
a
li
v
e
p
er
io
d
;

%
st

a
rt

co
u

n
ti

n
g

th
e

ti
m

er
fo

r
ke

ep
-a

li
v
e

m
es

sa
g
es

7
}

8 9
re
ce

iv
e
A
B
F

(r
ec
ei
v
e
f
ro
m
,A
B
F
p
a
ck
et

)
{

1
0

if
is
n
ot
k
n
ow
n
n
ei
g
h
bo
r(
re
ce
iv
e
f
ro
m

)
{

%
n

o
t

fr
o
m

a
n

ex
is

ti
n

g
n

ei
g
h
b

o
r

1
1

a
d
d
n
ei
g
h
bo
r(
re
ce
iv
e
f
ro
m

);
%

a
d

d
n

ew
n

ei
g
h
b

o
r

12
}

13
u
p
d
a
te
A
B
F

(r
ec
ei
v
e
f
ro
m
,A
B
F
p
a
ck
et

);
%

u
p

d
a
te

a
ll

A
B

F
s

1
4

if
ow
n
A
B
F
<
>
ow
n
A
B
F
la
st
{

%
if

th
er

e
is

ch
a
n
g
e

in
th

e
o
u

t-
g
o
in

g
A

B
F

15
G
I
D

+
+

;
%

in
cr

ea
se
G
I
D

1
6

se
n
d
A
B
F

(o
w
n
A
B
F
,G
I
D
,a
ll

);
%

b
ro

a
d

ca
st

th
e

u
p

d
a
te

d
A

B
F

1
7

ti
m
er

=
k
ee
p
a
li
v
e
p
er
io
d
;

%
st

a
rt

co
u

n
ti

n
g

th
e

ti
m

er
fo

r
ke

ep
-a

li
v
e

m
es

sa
g
es

1
8

}
1
9
}

2
0

2
1

u
p
d
a
te

A
B
F

(r
ec
ei
v
e
f
ro
m
,A
B
F
p
a
ck
et

)
{

%
u

p
d

a
te

th
e

re
ce

iv
ed

A
B

F
fo

r
a

sp
ec

ifi
c

n
ei

g
h
b

o
r

2
2

if
A
B
F
p
a
ck
et
<
>
A
B
F
la
st

(r
ec
ei
v
e
f
ro
m

)
%

if
it

is
d

iff
er

en
t

fr
o
m

th
e

la
st

o
n

e

2
3

A
B
F
la
st

(r
ec
ei
v
e
f
ro
m

)
=
A
B
F
p
a
ck
et

;
%

re
p

la
ce

th
e

la
st

o
n

e

2
4

}
2
5

ow
n
A
B
F

=
a
g
g
re
g
a
te

(a
ll
A
B
F
s)

;
%

g
en

er
a
te

th
e

o
u

tg
o
in

g
A

B
F

b
y

a
g
g
re

g
a
ti

n
g

a
ll

A
B

F
s

26
}

43

Example scenario

Figure 3.10 depicts a step by step example when a node joins an existing network.

Node A travels to a new network environment consisting of Node B, C, D, E, and F,

as shown in Figure 3.10(a). Node A sends out the filter BFA containing its own local

information, as is shown in Figure 3.10(b). Node B and C are the direct neighbors

of A and they receive BFA and store it, which is shown in Figure 3.10(c). B and

C aggregate A’s filter into their own outgoing filters BFB and BFC , respectively,

and broadcast them, as is shown in Figure 3.10(d). A receives the updates from

B and C and aggregates those two filters into the existing outgoing filter BFA. A

broadcasts the updated BFA. Meanwhile, Node D and G, as the direct neighbors of

B and C, receive the updated BFB and BFC from them. They compare with their

existing filters. If there is any update found in the new filter, the old one(s) will be

renewed and broadcasted, which is shown in Figure 3.10(e). The updates continue

till no new information needs to be added into the filters.

3.3.3 Design Choices

There is a basic assumption, which is necessary to complete the context exchange:

nodes have the knowledge of the hash functions and the standards of the ABFs in

use, i.e., the width, w, and the depth, d. The number of hash functions, b, the width,

w, and the depth, d, are highly dependent on the context information density, and

the frequency of updates and queries. We address this issue in detail in Chapter 4.

Meanwhile, we encounter a design choice whether or not to duplicate local con-

text information types in every layer of the outgoing ABF when a node first broad-

casts its information. We address this issue below.

Context Duplication

Context exchange is a process in which reachable context information types are filled

in every layer of the ABFs. The information i hops away is stored in layer i. If a

node is not isolated and has some neighbors, the node can in theory reach its own

local information via a neighbor in multiple hops. For example, via one neighboring

node, a node can reach its own information in any even number of hops. As a result,

44

after a number of iterations, its outgoing ABF will contain this information in all

even layers. Similarly, via multiple neighbors, this information can be presented in

other layers as well. As a result, a new node needs to update its outgoing filter a

few times to fill its local information layer by layer. Each update might also trigger

neighboring nodes to update. Nodes keep on exchanging ABFs to fill their outgoing

filters with local information from the new node. We name this an “advertisement

loop” in this thesis.

To avoid this to happen, an advertisement timer can be set for each node. When

a new context information type is announced by a node, neighboring nodes update

their ABFs accordingly. By keeping on exchanging all the updates with each other

during a short period, the new information types are added into all corresponding

layers of their ABFs. A node might receive updates from several neighbors in a

very short time. The number of updates can be reduced, if nodes wait for a while

and aggregate multiple changes into one update. This can be done by setting an

advertisement timer. A node can only send one advertisement within the period of

the timer. In this way, nodes aggregate changes that occurred within one period of

the advertisement timer into one ABF and broadcast it. Ideally, when the timer is

larger, nodes can aggregate more changes into one outgoing ABF. However, even

if the timer is set to infinite, a node can not always complete the update at once.

Some of the updates are dependent on each other. For example, a node needs to

add new information into layer i of its ABF. When the neighboring nodes receive

this update, they can add the new information into layer (i + 1) of their ABFs.

Only when the node receives the updates of its neighbors, it can add the same new

information type into layer (i+ 2) of its ABF. Although the advertisement timer is

a simple solution, it is not very effective to solve the problem completely.

Therefore, we propose another solution, which is to duplicate the local infor-

mation into all lower layers of the ABF. For instance, there are two nodes A and

B, which are direct neighbors. They form a new network and need to add each

other as a neighbor. By duplicating their information into the lower layers of their

ABFs, the nodes can avoid that an advertisement loop occurs. Figure 3.11(a) and

Figure 3.11(b) show the sequence diagram of the packet exchange between A and B

without and with duplicating local information, respectively, when d equals 4. Node

A contains information ‘A’ and node B contains information ‘B’. In this example,

45

A and B reach stable states where no more context exchange is necessary, after 5

packets exchanges without duplication, and after only 3 packets exchanges with du-

plication. Using duplication can save almost half of the packets that are exchanged

for adding information in the lower layers. In general, the more layers are defined

in the ABFs, the more packets can be saved by duplication.

Note that in this example, the final filters of A and B are different for the two

cases. More information is included in the filters when the local information is

duplicated, which contributes to a higher false positive probability. This is however

only the case for a network with two nodes. In reality, when more nodes are involved,

a node can reach itself via multiple paths. Therefore, the variety in the number of

hops is increased. For a high node density, the final states of the two cases will be

more or less similar to each other. For example, suppose that three nodes A, B,

and C, are connected to each other, as is shown in Figure 3.12(a), A can reach itself

through the paths {A, B, A}, {A, C, A}, {A, B, C, A}, and so on. Nodes A, B

and C contain information ‘A’, ‘B’, and ‘C’, respectively. The final outgoing ABF of

node A, with and without duplication, are shown in Figure 3.12(b). Figure 3.12(b)

shows that with duplication there is only extra information in the second layer of

the filter, which is the information ‘A’. As a result, the influence on the false positive

probability is negligibly small.

46

AA
BFD

BFF

BFG

BFBB

C

D

E

F

G

BFC

BFE

BFF

BFG

BFB

BFD

BFGBFD

BFD

BFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFDBFD

BFFBFF

BFGBFG

BFBBFBBB

CC

DD

EE

FF

GG

BFCBFC

BFEBFE

BFFBFF

BFGBFG

BFBBFB

BFDBFD

BFGBFGBFDBFD

BFDBFD

BFEBFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

(a)

BFA

BFA

BFABFA

BFABFA

AA
BFD

BFF

BFG

BFBB

C

D

E

F

G

BFC

BFE

BFF

BFG

BFB

BFD

BFGBFD

BFD

BFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFDBFD

BFFBFF

BFGBFG

BFBBFBBB

CC

DD

EE

FF

GG

BFCBFC

BFEBFE

BFFBFF

BFGBFG

BFBBFB

BFDBFD

BFGBFGBFDBFD

BFDBFD

BFEBFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

(b)

BFA

BFA

BFABFA

BFABFA

AA
BFD

BFF

BFG

BFBB

C

D

E

F

G

BFC

BFE

BFF

BFG

BFB

BFD

BFGBFD

BFD

BFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFDBFD

BFFBFF

BFGBFG

BFBBFBBB

CC

DD

EE

FF

GG

BFCBFC

BFEBFE

BFFBFF

BFGBFG

BFBBFB

BFDBFD

BFGBFGBFDBFD

BFDBFD

BFEBFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFA,BFG,BFD

BFA,BFD

BFA,BFG,BFD

BFA,BFD

(c)

BFA

BFA

BFABFA

BFABFA

AA
BFD

BFF

BFG

BFBB

C

D

E

F

G

BFC

BFE

BFF

BFG

BFB

BFD

BFGBFD

BFD

BFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFDBFD

BFFBFF

BFGBFG

BFBBFBBB

CC

DD

EE

FF

GG

BFCBFC

BFEBFE

BFFBFF

BFGBFG

BFBBFB

BFDBFD

BFGBFGBFDBFD

BFDBFD

BFEBFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFA,BFG,BFD

BFA,BFD

BFA,BFG,BFD

BFA,BFD

BFB

BFC

BFC

BFB

BFB

BFBBFB

BFCBFC

BFCBFC

BFBBFB

BFBBFB

(d)

BFA

BFA

BFABFA

BFABFA

AA
BFD

BFF

BFG

BFBB

C

D

E

F

G

BFC

BFE

BFF

BFG

BFB

BFD

BFGBFD

BFD

BFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFDBFD

BFFBFF

BFGBFG

BFBBFBBB

CC

DD

EE

FF

GG

BFCBFC

BFEBFE

BFFBFF

BFGBFG

BFBBFB

BFDBFD

BFGBFGBFDBFD

BFDBFD

BFEBFE

BFG,BFD

BFB,BFD,BFF

BFE,BFG

BFD,BFFBFD

BFB ,BFC,BFE,BFG

BFA,BFG,BFD

BFA,BFD

BFA,BFG,BFD

BFA,BFD

BFB,BFC

BFB ,BFC,BFE,BFG

BFB,BFD,BFF

BFB,BFC

BFB ,BFC,BFE,BFG

BFB,BFD,BFF

BFB

BFC

BFC

BFB

BFB

BFBBFB

BFCBFC

BFCBFC

BFBBFB

BFBBFB

(e)

Figure 3.10: Context Exchange: a new node joins the network. The purple color
indicates the updates in the figures.

47

Node A Node B

Filter A

Filter B

A

B

B
A

A
B
A

 Filter A

A
B
A
B

Filter B

B
A
B
A

Filter A

(a) Without duplication

A
A, B
A, B
A, B

B
A, B
A, B
A, B

A
A
A
A

B
B
B
B

(b) With duplication

Figure 3.11: Sequence diagram of packet exchange without(a) and with dupli-
cations(b).

A

CB

(a) Network topology

A
B,C

A,B,C
A,B,C

A
A,B,C
A,B,C
A,B,C

Without duplication With duplication

(b) The outgoing ABFs of node A

Figure 3.12: An example of three nodes network.

48

3.4 Context Query

Whenever a node looks for specific context information, a query is generated. In

Ahoy, queries are compared with the incoming filters from all neighbors and only

forwarded to the ones that can reach the requested information within the required

number of hops. The method is named “directional probabilistic querying”. In this

section, we address the detailed query process and discuss our design choices.

3.4.1 Context Query

There are three elementary parameters used in context querying:

• QID: Each query is identified by an unique query identification number, QID.

It is used to reduce the redundant traffic generated due to multiple alternative

paths. Every node keeps a list of queries (QID) that it receives. If a node

receives queries with the same QID from the same originator address more

than once, it processes the first one it receives and drops the others.

• hop count: A hop counter, hop count, counts the remaining number of hops

a query can travel further. It is used to restrict the query range. Queries can

only be sent a limited number of hops away from the node that is querying,

which typically equals the depth of the ABFs, d.

• time out: time out is a timer to count down the expiration of the querying

period. When a node generates a query, the node also sets a time out value

and it starts counting down. If no reply is received when the time out value

reaches 0, the query is expired and no required information has been found.

A node follows the following steps to send a query:

Step 1: A querying node first searches locally whether it has the required in-

formation.

Step 2: If the required information is not available locally, the information is

hashed into a Bloom filter (BF) and compared to the stored neighboring ABFs.

Step 3: If there is no match, the query is discarded. If a match is found in the

ABF of a certain neighbor, a query message is sent to that specific neighbor with

hop count set to d and a unique QID. The querying node starts a timer (time out).

49

When a node receives a query, it follows the following steps to process the query:

Step 1: It checks first whether the query has been received before, based on

QID and the query originator address. If yes, the query message is discarded; if

not, the receiving node performs following steps.

Step 2: It checks the query against the locally available context sources. If

there is any match on the first layer, a reply message is sent back to the querying

node. If there is no match, it takes Step 3.

Step 3: The receiving node decreases the hop count by 1 and checks the first

hop count layers of the incoming ABFs from the direct neighbors of this node.

Whenever there is a match and the hop count is larger than 0, the query is propa-

gated to that node. If no match is found, e.g., because of a false positive match in

the previous hop, or the hop count equals 0, the query is discarded.

If no response is received by the originating node within a time-out period

(time out), it understands that the required information is not available in the

range of d hops.

3.4.2 Design Choices

There are three design choices that we need to make with respect to querying.

• Query format: original information format vs BF;

• Query method: parallel vs sequential;

• Record query route.

In the following part of the section, we discuss these in detail.

Query format

A query can be sent to the neighbors in two formats: an original information format

or a basic Bloom filter (BF). The original information format can be text strings,

XML, etc, dependent on the details of the protocol design. In terms of packet size,

a packet containing the original information format, such as a text string or XML,

is generally larger than one containing a BF. For the same amount of information,

50

using the original information format needs a much larger packet than a BF. Sending

a BF query directly from the query initiator has also the advantage that hashing of

the same information only needs to be done once rather than multiple times in the

intermediate nodes along the query path.

However, a BF query might lead to false reply messages if the BF matches other

context type information than the requested one. This occurs when two or more

context information types are hashed into the same Bloom codes, which in the

original format, is not possible. Choosing proper hash functions can minimize the

chance that the mismatch happens in BF query format (this is elaborated in more

detail in Section 6.6.1).

Another important disadvantage of BF queries is related to security. It offers

the possibility of generating malicious traffic by propagating these queries through

the network. In Section 6.4.1, we argue that querying with the original format can

well solve this problem.

Further, both query formats have different vulnerability against various malicious

attacks, which we will address in detail in Chapter 6. The final choice of query

format can be made based on the detailed network scenarios and the preference of

the network designers.

Query Method

Context querying can be done by exploring possible context sources in a parallel or

sequential way. In a parallel query method, a query will be forwarded to all the

neighbors that show matches in their corresponding ABFs. Therefore, all requested

information available in d hops can be found simultaneously. It offers choices to

end users. In contrast, queries are only forwarded to one corresponding neighbor

at a time in the sequential query method. If the queried neighbor does not have

the requested information, the query needs to be forwarded to another neighbor.

Consequently, only one reply can be received at once.

Table 3.5 presents pseudo-code for parallel querying. The function receive query

is called when a query packet is received from a local application or from one

of the neighboring nodes. Its arguments are the sender of this received packet

(received from), and the query packet itself (query packet).

51

T
ab

le
3.

5:
P

se
u
d
o-

co
d
e

fo
r

p
ar

al
le

l
q
u
er

ie
s.

1
re
ce

iv
e
q
u
e
ry

(r
ec
ei
v
e
f
ro
m
,q
u
er
y
p
a
ck
et

)
{

2
if
is
n
ot
in

id
ca
ch
e(
qu
er
y
p
a
ck
et
.i
d
,q
u
er
y
p
a
ck
et
.o
ri
g
in
a
to
r)
{

%
if

q
u

er
y

h
a
s

n
o
t

b
ee

n
re

ce
iv

ed
b

ef
o
re

3
a
d
d
to
id
ca
ch
e(
qu
er
y
p
a
ck
et
.i
d
,q
u
er
y
p
a
ck
et
.o
ri
g
in
a
to
r)

;
4

if
h
a
v
e
lo
ca
l
m
a
tc
h

(q
u
er
y
p
a
ck
et

)
{

%
ch

ec
k

lo
ca

l
m

a
tc

h

5
re
p
ly
p
a
ck
et

=
m
a
k
e
re
p
ly

(q
u
er
y
p
a
ck
et

);
%

se
n

d
re

p
ly

6
se
n
d
re
p
ly

(r
ec
ei
v
ed

f
ro
m
,r
ep
ly
p
a
ck
et

);
7

}
8

qu
er
y
p
a
ck
et
.h
op

co
u
n
t
−
−

;
%

d
ec

re
a
se

h
o
p

co
u

n
te

r

9
if
qu
er
y
p
a
ck
et
.h
op

co
u
n
t
>

0
{

%
n

o
t

ye
t

re
a
ch

th
e

m
a
x
im

u
m

q
u

er
y

ra
n

g
e

10
fo

r
k

=
1

to
n
u
m
be
r
of

n
ei
g
h
bo
rs
{

%
ch

ec
k

a
ll

th
e

n
ei

g
h
b

o
rs

11
if
k
<
>
re
ce
v
ed

f
ro
m
{

%
b

u
t

n
o
t

o
n

e
th

e
q
u

er
y

re
ce

iv
ed

fr
o
m

12
fo

r
i

=
0

to
qu
er
y
p
a
ck
et
.h
op

co
u
n
t
−

1
{

%
ch

ec
k

re
la

te
d

la
y
er

s

13
if

(q
u
er
y
p
a
ck
et
.b
f

&
f
il
te
r
in

(k
,i

))
=

=
qu
er
y
p
a
ck
et
.b
f
{

%
m

a
tc

h
fo

u
n

d

14
a
d
d
to
ro
u
te
ca
ch
e(
qu
er
y
p
a
ck
et
,r
ec
ei
v
ed

f
ro
m

);
%

re
co

rd
th

e
p

a
th

15
se
n
d
qu
er
y
(k
,q
u
er
y
p
a
ck
et

);
%

fo
rw

a
rd

th
e

q
u

er
y

to
n

ei
g
h
b

o
r
k

16
b

re
ak

;
%

st
o
p

p
ro

ce
ss

in
g

o
th

er
la

y
er

s
fo

r
n

ei
g
h
b

o
r
k

17
}

18
}

19
}

20
}

21
}

el
se
{

%
re

a
ch

th
e

m
a
x
im

u
m

q
u

er
y

ra
n

g
e

22
d
is
ca
rd

(q
u
er
y
p
a
ck
et

);
23

}
24

}
el

se
{

25
d
is
ca
rd

(q
u
er
y
p
a
ck
et

);
26

}
27

}

52

In case of sequential querying, the originating node checks the stored attenuated

Bloom filters on a layer-by-layer basis. It checks one layer of every incoming ABF.

If no match is found, it goes to the next layer. If a match is found in a certain filter

at layer i, the search is stopped and a query message is sent to the corresponding

neighbor. There are two choices of setting hop count. It can be set to d, as the

maximum query range. It can also be set to i + 1, because we expect the context

source node locates i hops away from the originator, which is a more traffic-efficient

way. Any node that receives a query performs in the same way. The hop count first

decreases by 1. It checks locally whether there is a match. If a match is found, a

reply message to commit the existence of the requested information is sent back to

the query originator. If not, it checks the stored ABFs on a layer-by-layer basis. The

query is forwarded to the neighbor in which an ABF match is found in one of the

layers 1 till hop count. The query is forwarded till hop count equals 0. In this case,

a reply message to indicate that no information is found is sent back to the previous

node. When the previous node receives such a reply, it checks other neighbors,

and possibly additional queries will be sent. If not, it forwards the reply to its

previous node. All nodes who receive such a reply perform the same, until the reply

reaches the query originator. Then, the query originator checks the next possible

neighbor. If every possible neighbor has been checked and no successful reply has

been received, it knows the requested information does not exist. Table 3.6 presents

the pseudo-code for sequential querying.

53

T
ab

le
3.

6:
P

se
u
d
o-

co
d
e

fo
r

se
q
u
en

ti
al

q
u
er

ie
s.

1
re
ce

iv
e
q
u
e
ry

(r
ec
ei
v
ed

f
ro
m
,q
u
er
y
p
a
ck
et

)
{

2
if
is
n
ot
in

id
ca
ch
e(
qu
er
y
p
a
ck
et
.i
d
,q
u
er
y
p
a
ck
et
.o
ri
g
in
a
to
r)
{

%
if

q
u

er
y

h
a
s

n
o
t

b
ee

n
re

ce
iv

ed
b

ef
o
re

3
a
d
d
to
id
ca
ch
e(
qu
er
y
p
a
ck
et
.i
d
,q
u
er
y
p
a
ck
et
.o
ri
g
in
a
to
r)

;

4
if
h
a
v
e
lo
ca
l
m
a
tc
h

(q
u
er
y
p
a
ck
et

)
{

%
ch

ec
k

lo
ca

l
m

a
tc

h

5
re
p
ly
p
a
ck
et

=
m
a
k
e
re
p
ly

(q
u
er
y
p
a
ck
et
,T
R
U
E

);
%

se
n

d
re

p
ly

6
se
n
d
re
p
ly

(r
ec
ei
v
ed

f
ro
m
,r
ep
ly
p
a
ck
et

);

7
}

el
se
{

8
qu
er
y
p
a
ck
et
.h
op

co
u
n
t
−
−

;
%

d
ec

re
a
se

h
o
p

co
u

n
te

r

9
if
qu
er
y
p
a
ck
et
.h
op

co
u
n
t
>

0
{

%
n

o
t

ye
t

re
a
ch

th
e

m
a
x
im

u
m

q
u

er
y

ra
n

g
e

10
se
a
rc
h
n
ex
t
m
a
tc
h

(q
u
er
y
p
a
ck
et
,1
,0
,r
ec
ei
v
ed

f
ro
m

);
%

lo
o
k

fo
r

n
ex

t
m

at
ch

11
}

el
se
{

%
re

a
ch

th
e

m
a
x
im

u
m

q
u

er
y

ra
n

g
e

12
re
p
ly
p
a
ck
et

=
m
a
k
e
re
p
ly

(q
u
er
y
p
a
ck
et
,F
A
L
S
E

);
%

re
p

ly
N

O
M

A
T

C
H

13
se
n
d
re
p
ly

(r
ec
ei
v
ed

f
ro
m
,r
ep
ly
p
a
ck
et

);

14
}

15
}

16
}

el
se
{

17
d
is
ca
rd

(q
u
er
y
p
a
ck
et

);

18
}

19
}

20 21
se
a
rc
h

n
e
x
t
m
a
tc
h

(q
u
er
y
p
a
ck
et
,k
,i
,r
ec
ei
v
ed

f
ro
m

)
{

%
lo

o
k

fo
r

th
e

n
ex

t
m

a
tc

h

22
%

st
ar

t
fr

om
la

ye
r

i
of

th
e

in
co

m
in

g
fi

lt
er

s
o
f

n
ei

g
h
b

o
r

k

23
w

h
il

e
(i
<
qu
er
y
p
a
ck
et
.h
op

co
u
n
t
−

1)
{

%
ch

ec
k

a
ll

th
e

co
rr

es
p

o
n

d
in

g
la

ye
rs

24
w

h
il

e
(k
≤
n
u
m
be
r
of

n
ei
g
h
bo
rs

)&
(k
<
>
re
ce
iv
ed

f
ro
m

)
{

%
ch

ec
k

a
ll

n
ei

g
h
b

or
s

25
if

(q
u
er
y
p
a
ck
et
.b
f

&
f
il
te
r
in

(k
,i

))
=

=
qu
er
y
p
a
ck
et
.b
f
{

%
m

a
tc

h
fo

u
n

d

54
26

a
d
d
to
ro
u
te
ca
ch
e(
qu
er
y
p
a
ck
et
,r
ec
ei
v
ed

f
ro
m

);
%

re
co

rd
th

e
p

a
th

2
7

a
d
d
to
qu
er
y
ca
ch
e(
qu
er
y
p
a
ck
et
,k
,i
,

28
qu
er
y
p
a
ck
et
.h
op

co
u
n
t,
re
ci
v
ed

f
ro
m

);
%

re
co

rd
th

e
q
u

er
y

29
se
n
d
qu
er
y
(k
,q
u
er
y
p
a
ck
et

);
%

fo
rw

a
rd

th
e

q
u

er
y

to
n

ei
g
h
b

o
r
k

3
0

S
T

O
P

;
%

st
o
p

th
e

en
ti

re
fu

n
ct

io
n

3
1

}
3
2

k
+

+
;

3
3

}
34

i
+

+
;

35
}

3
6

re
p
ly
p
a
ck
et

=
m
a
k
e
re
p
ly

(q
u
er
y
p
a
ck
et
,F
A
L
S
E

);
%

re
p

ly
N

O
M

A
T

C
H

37
se
n
d
re
p
ly

(r
ec
ei
v
ed

f
ro
m
,r
ep
ly
p
a
ck
et

);

38
}

39 40
re
ce

iv
e
re
p
ly

(r
ep
ly
p
a
ck
et

)
{

%
re

ce
iv

e
a

re
p

ly

4
1

qu
er
y
p
a
ck
et

=
re
p
ly
p
a
ck
et
.q
u
er
y
p
a
ck
et

;

42
if
re
p
ly
p
a
ck
et
.r
ep
ly

=
=

T
R

U
E
{

%
fi

n
d

th
e

re
q
u

es
te

d
in

fo
rm

a
ti

o
n

ty
p

e

4
3

re
m
ov
e
qu
er
y
ca
ch
e(
qu
er
y
p
a
ck
et

);
%

re
m

ov
e

fr
o
m

ca
ch

e

4
4

if
is
or
ig
in
a
to
r(
qu
er
y
p
a
ck
et

)
{

%
is

th
e

q
u

er
y

o
ri

g
in

a
to

r

4
5

f
in
d
co
n
te
x
t(
qu
er
y
p
a
ck
et

);

46
}

el
se
{

%
n

o
t

th
e

q
u

er
y

o
ri

g
in

a
to

r

47
re
ce
iv
ed

f
ro
m

=
re
tr
ie
v
e
d
a
ta
ro
u
te
ca
ch
e(
qu
er
y
p
a
ck
et

);

48
se
n
d
re
p
ly

(r
ec
ei
v
ed

f
ro
m
,r
ep
ly
p
a
ck
et

);
%

R
ep

ly
to

th
e

n
ei

g
h
b

o
r

th
a
t

se
n
t

th
e

q
u

er
y

4
9

}
5
0

}
el

se
{

%
th

e
re

q
u

es
te

d
in

fo
rm

a
ti

on
ty

p
e

n
o
t

fo
u

n
d

5
1

(k
,i
,h
op

co
u
n
t,
re
ce
iv
ed

f
ro
m

)
=

%
re

tr
ie

v
e

st
o
re

d
d

a
ta

52
re
tr
ie
v
e
d
a
ta
qu
er
y
ca
ch
e(
qu
er
y
p
a
ck
et

);
%

re
tr

ie
v
e

st
o
re

d
d

a
ta

5
3

qu
er
y
p
a
ck
et
.h
op

co
u
n
t

=
h
op

co
u
n
t;

55

54
re
m
ov
e
qu
er
y
ca
ch
e(
qu
er
y
p
a
ck
et

);
%

re
m

ov
e

fr
o
m

ca
ch

e

55
re
m
ov
e
ro
u
te
ca
ch
e(
qu
er
y
p
a
ck
et

);
%

re
m

ov
e

fr
o
m

ca
ch

e

56
se
a
rc
h
n
ex
t
m
a
tc
h

(q
u
er
y
p
a
ck
et
,k

+
1
,i
,r
ec
ei
v
ed

f
ro
m

);
%

lo
o
k

fo
r

n
ex

t
m

a
tc

h

57
}

58
}

56

In general, a longer query time is consumed in the sequential method, compared

to the parallel method. The same amount of time is used, only if the first querying

path is the one through which the requested information is reached. If it is not,

more query paths are visited, and it takes a longer time to find the information.

However, with the sequential query method, fewer nodes are queried compared to

the parallel method. In the best case, only nodes along one path are queried. In

the worst case, all possible nodes are queried, which is the same as with the parallel

method. The sequential method therefore saves some traffic in this respect. But it

also generates more replies. No matter whether the requested information type is

found or not, at the end of each path, a reply is generated. However, the sequential

method also has an advantage. It can specify different number of query hops for

each neighbor, which in the parallel query is always set to a same number in one

broadcast message to all neighbors. In case the parallel query method would also

like to set different numbers for different neighbors, it needs to unicast different

queries to each neighbor. In this respect, the sequential query method is slightly

more efficient, if we know in advance within how many hops we expect to find the

queried information.

The choice between parallel and sequential queries is a trade off between the

number of replies, the used bandwidth, and the response time. With the sequential

method, at most one node is found that possesses the requested information; less

traffic is generated; but in general, more querying time is consumed. Using parallel

querying, all the nodes with the requested information are queried; more traffic for

querying is generated; but in general, less querying time is used. The choice highly

depends on the specific network scenario, such as the network density and user or

vendor requirements. For instance, in a very high density network, parallel queries

might generate heavy traffic, since multiple neighbors are queried simultaneously.

Therefore, in high density networks, we suggest to use the sequential query method

to avoid flooding the network with query messages. In low density networks, we

suggest to use parallel query method to save querying time.

Route Recording

When a node has the requested information, it needs to send a reply to the node

that has sent the query. This can only be done if the (shortest) path to the querying

57

node is known.

There are three alternatives for recording query routes for providing the (short-

est) path. The first option is to maintain (soft) state routing information in the

nodes. Nodes record where a query is received from and sent to. The reply of such

a query is routed back to the query originator based on those information. This is

shown in the pseudo codes for parallel and sequential queries. This can put an extra

burden on those nodes that store the routing information.

Alternatively, the reply path can be stored in the query messages themselves.

This results in a larger query packet size and increased transmission costs. In the

first two alternatives, the reply message is sent along the same path as the query

(but in opposite direction). They both encounter the problem that the reply message

gets lost, whenever a node along the path moves or disappears. However, they have

the advantage that no extra routing functionality has to be present in the platform.

The third alternative is that the system can rely on an external routing protocol.

This has the benefit of no consumption of extra storage room or bandwidth. It

does not rely on the same paths used in Ahoy. Even if the path to the querying

node has changed, the reply message can still reach the querying node as long as

there is at least one path to that node. However, this alternative requires extra

functionalities of routing protocols. Since a routing protocol is mostly needed to set

up a connection between the querying and replying node to deliver the requested

information, it could be a good option after all.

The final choice is again based on the design preference and different network

scenarios.

3.5 Context Update and Maintenance

Ahoy needs a mechanism to support nodes maintaining and updating the information

in the network. Nodes should be aware of the existence of their neighbors, and

be able to detect the appearance and disappearance of neighbors and their context

information. Ahoy utilizes a keep-alive mechanism to keep nodes alert for changes

in their environment. In the mechanism, each outgoing ABF of a node has a unique

generation identification, called GID. The GID is incremented by 1 every time a

new ABF is sent by the node. A node stores the latest ABF and its GID for each

58

neighbor. A keep-alive message is a short message which contains the latest GID.

The keep-alive period is the fixed time interval between two consecutive keep-alive

messages. It is assumed that it is determined in advance, and that the same value

should be used over the entire network. Each node in the network therefore should

know the keep-alive period.

The keep-alive mechanism operates always 5 types of actions:

1. A node sends out keep-alive messages periodically, when there is no change in

its incoming or outgoing ABFs. A timer is used to determine the time stamp

on when the keep alive messages are sent. Whenever an ABF or a keep alive

message is sent out, the timer is set back to the keep alive period. When the

timer expires, a keep alive message is sent out.

2. A node aggregates all ABFs from its neighbors, whenever there is a change in

its local context information or in the incoming ABFs of its neighbors, includ-

ing a new ABF from a newly discovered neighbor, or no ABF anymore from

a disappearing neighbor. The newly generated outgoing ABF is broadcasted if

it is different from the last outgoing ABF.

3. If a node receives a keep-alive message from an existing neighbor with a GID

newer than the one stored for that neighbor or a keep-alive message from an

unknown node, it sends out an update request to that node.

4. A node replies to an update request by broadcasting its latest outgoing ABF. If

the update request is from an unknown node, the node adds this node as a new

neighbor.

5. A node removes a neighbor and its related information if it does not receive any

ABF or keep-alive message from this neighbor within two consecutive keep-alive

periods.

Table 3.7 represents the above mentioned 5 actions by pseudo code. Action

1 is illustrated in Function send keep-alive. Action 2 is depicted in Function re-

ceive local change and receive ABF from Table 3.4. Action 3 is related to Function

receive keep alive. Action 4 is explained by Function receive update request. Action

5 is addressed by Function remove neighbor.

59

T
ab

le
3.

7:
R

el
at

ed
p
se

u
d
o-

co
d
e

fo
r

co
n
te

x
t

u
p

d
at

e
an

d
m

ai
n
te

n
an

ce
.

1
se

n
d

k
ee

p
-a

li
v
e
{

2
ti
m
er
−
−

;

3
if
ti
m
er

=
=

0
{

4
se
n
d
K
A

(G
I
D
,a
ll

);
%

b
ro

a
d

ca
st

K
A

m
es

sa
g
e

w
it

h
th

e
cu

rr
en

t
G
I
D

5
ti
m
er

=
k
ee
p
a
li
v
e
p
er
io
d
;

%
st

a
rt

co
u

n
ti

n
g

th
e

ti
m

er
fo

r
ke

ep
-a

li
v
e

m
es

sa
g
es

6
}

7
}

8 9
re
ce

iv
e
lo
ca

l
c
h
a
n
g
e

(l
oc
a
l
in
f
o,
a
d
d
/r
em

ov
e)
{

%
re

ce
iv

e
lo

ca
l

in
fo

rm
a
ti

o
n

ch
a
n
g
e

10
u
p
d
a
te
lo
ca
l(
lo
ca
l
in
f
o,
a
d
d
/r
em

ov
e)

;

11
if
ow
n
A
B
F
<
>
ow
n
A
B
F
la
st
{

%
if

th
er

e
is

ch
a
n
g
e

in
th

e
o
u

t-
g
o
in

g
A

B
F

12
G
I
D

+
+

;
%

in
cr

ea
se
G
I
D

b
y

1

13
se
n
d
A
B
F

(o
w
n
A
B
F
,G
I
D
,a
ll

);
%

b
ro

a
d

ca
st

th
e

u
p

d
a
te

d
A

B
F

14
ti
m
er

=
k
ee
p
a
li
v
e
p
er
io
d
;

%
st

a
rt

co
u

n
ti

n
g

th
e

ti
m

er
fo

r
ke

ep
-a

li
v
e

m
es

sa
g
es

15
}

16
}

17 18
u
p
d
a
te

lo
ca

l
(l
oc
a
l
in
f
o,
a
d
d
/r
em

ov
e)
{

%
u

p
d

a
te

s
d

u
e

to
lo

ca
l

in
fo

rm
a
ti

o
n

ch
a
n

g
e

19
if
a
d
d
{

%
a
d

d
in

fo
rm

a
ti

o
n

20
lo
ca
l
A
B
F

=
a
d
d
(l
oc
a
l
in
f
o)

;

21
}

22
el

se
if
re
m
ov
e
{

%
re

m
ov

e
in

fo
rm

a
ti

o
n

23
lo
ca
l
A
B
F

=
re
m
ov
e(
lo
ca
l
in
f
o)

;

24
}

25
ow
n
A
B
F

=
a
g
g
re
g
a
te

(a
ll
A
B
F
s)

;

60
26

}
27 28

re
ce

iv
e
k
ee

p
-a

li
v
e

(r
ec
ei
v
e
f
ro
m
,k
ee
p
A
li
v
e
p
a
ck
et

)
{

%
re

ce
iv

e
K

A
m

es
sa

g
e

29
if
is
k
n
ow
n
n
ei
g
h
bo
r(
re
ce
iv
e
f
ro
m

)

30
&

&
is
sa
m
e
G
I
D

(r
ec
ei
v
e
f
ro
m

)
{

%
fr

o
m

a
n

ex
is

ti
n

g
n

ei
g
h
b

o
r

w
it

h
th

e
co

rr
ec

t
G

ID

3
1

u
p
d
a
te
la
st
ti
m
e(

re
ce

iv
e

fr
om

,
ke

ep
A

li
v
e

p
ac

ke
t)

;
%

u
p

d
a
te

th
e

la
st

re
ce

iv
e

ti
m

e

32
}

33
el

se
{

%
fr

o
m

a
n

u
n

k
n

ow
n

n
ei

g
h
b

o
r

34
%

o
r

a
n

ex
is

ti
n

g
n

ei
g
h
b

o
r

w
it

h
d

iff
er

en
t

G
ID

35
se
n
d
u
p
d
a
te
re
qu
es
t(
re
ce
iv
e
f
ro
m

);
%

se
n

d
u

p
d

a
te

re
q
u

es
t

36
}

37
}

38 39
re
ce

iv
e
u
p
d
a
te
-r
eq

u
e
st

(r
ec
ei
v
e
f
ro
m
,u
p
d
a
te
R
eq
u
es
t
p
a
ck
et

)
{

40
if
is
n
ot
k
n
ow
n
n
ei
g
h
bo
r(
re
ce
iv
e
f
ro
m

)
{

%
if

it
is

n
o
t

fr
o
m

a
n

ex
is

ti
n

g
n

ei
g
h
b

o
r

41
a
d
d
n
ei
g
h
bo
r(
re
ce
iv
e
f
ro
m

);
%

a
d

d
n

ew
n

ei
g
h
b

o
r

42
}

43
se
n
d
A
B
F

(o
w
n
A
B
F
,G
I
D
,a
ll

);
%

b
ro

a
d

ca
st

it
s

A
B

F

4
4

ti
m
er

=
k
ee
p
a
li
v
e
p
er
io
d
;

%
st

a
rt

co
u

n
ti

n
g

th
e

ti
m

er
fo

r
ke

ep
-a

li
v
e

m
es

sa
g
es

45
}

46 47
re
m
o
v
e
n
e
ig
h
bo

r
{

4
8

fo
r
i

=
1

to
n
u
m
be
ro
f
n
ei
g
h
bo
rs
{

4
9

if
cu
rr
en
t
ti
m
e
−
la
st
ti
m
e
K
A
/A
B
F

(i
)
>

=
2
·k
ee
p
a
li
v
e
p
er
io
d
{

%
ti

m
e

o
u

t

5
0

re
m
ov
e
n
ei
g
h
bo
r
li
st

(i
))

;
%

re
m

ov
e

n
ei

g
h
b

o
r
i

fr
o
m

th
e

li
st

o
f

n
ei

g
h
b

o
rs

51
ow
n
A
B
F

=
a
g
g
re
g
a
te

(a
ll
A
B
F

);
%

a
g
g
re

g
a
te

th
e

re
m

a
in

in
g

A
B

F
s

5
2

if
ow
n
A
B
F
<
>
ow
n
A
B
F
la
st
{

%
if

th
er

e
is

ch
a
n
g
e

in
th

e
o
u

t-
g
o
in

g
A

B
F

5
3

G
I
D

+
+

;
%

in
cr

ea
se
G
I
D

b
y

1

61

54
se
n
d
A
B
F

(o
w
n
A
B
F
,G
I
D
,a
ll

);
%

b
ro

a
d

ca
st

th
e

u
p

d
at

ed
A

B
F

55
ti
m
er

=
k
ee
p
a
li
v
e
p
er
io
d
;

%
st

a
rt

co
u

n
ti

n
g

th
e

ti
m

er
fo

r
ke

ep
-a

li
v
e

m
es

sa
g
es

56
}

57
}

58
}

59
}

62

There are five cases that could happen in context updates and maintenance, as

addressed below:

Case 1: If there is no change in the context, keep-alive messages are sent out

periodically based on Action 1. A node can identify the freshness of the stored

ABFs by comparing GIDs. Once it notices that a GID is different from that of a

stored ABF, it knows that one or more updates might have gotten lost. An update

request is sent out based on Action 3. The neighbor replies with its latest ABF,

based on Action 4. If the ABF contains different information than the stored ABF,

the node replaces the stored one with the new ABF and aggregate all ABFs. A new

ABF is generated and broadcasted to the neighbors based on Action 2.

Case 2: If there is any change in the possessed context information, a node sends

out the updated ABFs based on Action 2. Whenever a node receives a different

ABF compared to the one stored from the corresponding neighbor, it replaces the

stored ABF with the new one and aggregates all ABFs from all neighbors and

broadcasts it based on Action 2. The change is propagated among other nodes, till

all nodes in the vicinity (e.g., d hops) of the node, are updated.

Case 3: If a node receives a keep-alive message from an unknown neighbor, it

realizes that a new node comes into its communication range. It sends out an update

request to the new neighbor based on Action 3. The new neighbor replies with its

latest ABF based on Action 4. The node adds the new neighbor into its neighboring

list and aggregates all ABFs including the new one. The newly generated ABF of

the node is broadcast to the neighbors based on Action 2. Similar actions are

taken by the new neighbor. The other neighbors of the node might also need to

update their ABFs a couple of times to coordinate the change based on Action

2. This updating process will be further addressed in detail in Section 5.2.4 and

Section 5.3.3.

Case 4: If a node receives an ABF from an unknown neighbor which just moves

into its communication range, it adds the node as its new neighbor, aggregates the

information into its out-going ABF, and broadcasts it based on Action 2. The new

neighbor and the other existing neighbor(s) react accordingly based on Action 2,

until there is no change in the out-going ABF of any node.

Case 5: If a node does not receive either keep-alive messages or ABFs from a

certain neighbor for two consecutive keep-alive periods, it considers the neighbor

63

has left and removes it from the neighboring list based on Action 5. This action

triggers the node to re-aggregate the ABFs from the existing neighbors, from which

any information related to the disappearing node is also removed. The deletion

of the disappearing node is propagated further to the other neighbors if necessary

based on Action 2. This will be further discussed in detail in Section 5.2.3 and

Section 5.3.2.

3.6 Discussion

Ahoy is a context discovery protocol especially designed for ad-hoc networks. The

differences between Ahoy and the proactive and reactive protocols are summarized

in Table 3.8.

Table 3.8: The differences between Ahoy, the proactive and reactive protocols.

Context exchange Context query
Context update
and maintenance

Ahoy
Broadcast with ABFs
within d hops

Directional queries
to the neighbors
who probably have
access to the required
information

Update upon changes
within d hops and
maintain with keep-
alive messages

Proactive
Broadcast to part of or
the entire network

Query only the node
who has the required
information

Updates in part of or
the entire network

Reactive No
Query over part of or
the entire network

No

Based on the characteristics of ad-hoc networks, summarized in Section 1.2, a dis-

covery protocol is needed that can locate the requested information without frequent

packet exchange and complicated processing. Ahoy can fulfill these requirements.

The following two features are essential in doing so:

• To utilize ABFs to save space and computation complexity. Com-

pared with the text strings or XML format used by the proactive protocol,

64

the ABF format requires much less storage and transmission bandwidth by

compressing multiple context information types into a small ABF and still

clearly indicate the existence of the information with reasonable accuracy. To

aggregate information nodes by using ABFs requires only a bit-wise OR op-

eration. To check the availability of the information requires only a bit-wise

AND operation and a comparison with results.

• To provide directional probabilistic querying to save querying traffic.

Unlike flooding queries into the entire network, nodes can only forward queries

to the neighbors that with high probability contain the requested information.

We can imagine the proactive protocol is perfectly suitable for a static network

with frequent queries. Nodes only need to exchange their information once and

can find the requested information immediately without searching. On the other

hand, the reactive protocol should perform best for a highly mobile network with

occasional queries. When the information in the network keeps on changing, it

consumes a lot of traffic to keep all nodes updated. The best option will be to look

for the requested information only when necessary. However, those two are extreme

cases, either totally static or highly mobile. In the more general situation where

nodes in the network move and look for certain information on a regular basis, we

believe Ahoy has a better performance than the two conventional approaches with

the two space and traffic saving features.

As we introduced in Section 3.1, false positive is a drawback of Ahoy. Choosing

a larger (wider) filter decreases the chance of false positive probability. However,

this results in a larger packet size of advertisements. Conversely, a small size of

advertisement packet can well reduce the traffic for context exchange, but increases

the number of false positive queries. It is a trade-off, which depends on a large num-

ber of factors, such as the size of the attenuated Bloom filters (width and depth),

the number of hash functions, and the number of context information types, ad-

vertisement and query packet size and rate. In the next chapter, we elaborate on

this and compare the network traffic generated by Ahoy and the two conventional

approaches.

Chapter 4

Performance Modeling

In Chapter 3, we introduced the light-weighted discovery protocol, Ahoy, for MANETs.

It utilizes space-efficient context representation and selective query distribution.

However, in Section 3.6, we emphasize that due to false positives, redundant queries

may contribute significantly to the costs of context discovery. In order to reduce

the number of unnecessary queries, we have to reduce the rate of false positives,

which can only be done by using larger attenuated Bloom filters. To achieve opti-

mal network costs, in terms of number of bits transmitted per second, we need to

strike a balance between the number of false positive and the size of the attenuated

Bloom filter (ABF). The optimal size of the ABF depends on its depth, the rates

at which advertisements are sent and queries are generated, and the cardinality of

the represented set, i.e., the number of context information types that are to be

advertised.

In this chapter, we examine the network cost generated by Ahoy. An analytical

model is set up to obtain the size of the Bloom filter that yields the minimum network

costs. In the model, the width of the filters and the number of hash functions can

be set to achieve the optimal network cost, and to observe how the amount of traffic

in Ahoy compares to that in conventional approaches.

The chapter is organized as follows. In Section 4.1 we introduce the preliminaries

used in our modeling. In Section 4.2, the Ahoy network cost function is induced. We

give a brief introduction on two types of reference protocols: proactive and reactive

protocols, in Section 4.3. In Section 4.4, the experimental results are presented.

Finally, we validate the analytical model with the simulation model established in

[27] in Section 4.5.

65

66

The work presented in Section 4.1 has been published in [53, 54]. The work in

Section 4.2, Section 4.3, and Section 4.4 has been published in [51, 52, 50]. The

work in Section 4.5 has been published in [50].

4.1 Modeling Preliminaries

In this section, we introduce the modeling background. In Section 4.1.1, we describe

the network structures that are used in our model. To calculate the network costs,

we have to quantify the packet size, the transmission rate, and the connectivity

between nodes. We focus on these issues in Section 4.1.2.

4.1.1 Network structure

We use two typical network structures to model the performance of Ahoy. The first

network has a grid structure, and the second one has a circular structure.

Grid structure

In a grid structure, each node has 4 direct neighbors within its communication range.

The distance between a pair of connected nodes is equal to the communication range

r. The connections between nodes can be considered as series of intersecting vertical

and horizontal axes which form a two-dimensional r × r sized grid. An example is

shown in Figure 4.1(a). The regularity of the grid structure and the fixed number

of neighbors for each node enables us to use a rather simple model to analyze the

performance of Ahoy. In the following part of the thesis, we use superscript g to

denote the formulas for grid structured networks.

Circular structure

Networks can be represented as a graph G = (V,E), where nodes are vertices (V),

and links between nodes are edges (E). The structure of an ad-hoc network can

often be modeled as a random geometric graph [65] (e.g., [5, 34]), which can be

defined as below.

67

A random geometric graph places vertices randomly, uniformly, and inde-

pendently into a bounded region. Vertices are connected with edges if the distance

between two vertices is smaller than or equal to threshold r(r > 0).

In this thesis, we use random geometric graphs as the basis for our analysis.

From the point of view of a selected node, the set of areas in which nodes are

located at a distance of i hops, can be approximated by a set of concentric circles, one

for each value of i. For this reason, we refer to this model as the circular structure,

shown in Figure 4.1(b). In the following, the formulas related to a circular structured

network will be represented with the superscript c.

(a) Grid structure

(b) Circular structure

Figure 4.1: Network structures.

4.1.2 Connectivity in Ad-hoc Network Models

When we count the network traffic generated in Ahoy, it is essential to know how

many nodes are transmitting how many packets at a certain number of hops away.

The first question we need to resolve here is how nodes are connected and what is

the node degree multiple hops away.

Graph theory is often used to facilitate the studies in the area of node degree and

connectivity. In graph theory, the degree of a vertex can be defined as the number of

edges incident to it. When it is applied to describe a network, the degree of a node

can be defined as the number of direct neighbors that it has. A graph is connected,

68

if there is a path from any vertex to any other vertex in the graph. A graph is called

k-connected if the graph remains connected when fewer than k vertices are removed

from the graph.

Current research of connectivity mostly focuses on the following two major ques-

tions: (1) how to achieve a k-connected network; (2) what is the degree distribution

of a node. For example, [34] studied the degree distribution of a node in an ad-hoc

network through a combination of analytical modeling and simulations. They found

that the degree distribution is binomial for low values of the mean degree. For a

given network density and communication range, we can thus obtain the distribution

of the number of direct neighbors a node has. [5] has investigated the relationship

between range r, node density, and the probability that the network is k-connected,

assuming random geometric graphs. The results provide the principles for choosing

practical values of those parameters for simulations and design.

However, to our knowledge no research has been done on the degree distribution

multiple hops away. Here, we define the i-hop node degree as being the number of

different nodes a selected node can reach in exactly i hops and not in fewer hops.

Let us denote the i-hop node degree as Di.

For a grid structured network, it is straightforward to determine Dg
i . By defini-

tion, the node degree for 0 hop is:

Dg
0 = 1. (4.1)

For i > 0, Figure 4.1(a) shows that 4i new nodes become reachable when increasing

the number of hops from (i− 1) to i. The ith hop node degree, Dg
i , can be derived

as:

Dg
i = 4 · i (i > 0). (4.2)

The node degree increases linearly with distance (number of hops). The total

number of nodes reachable within at most i hops, N g
i , including the selected node

itself, can be obtained by summation of the node degrees per number of hops:

N g
i =

i∑
j=0

Dg
i = 1 + 2i(i+ 1). (4.3)

For circular-structured network, Dc
i can be derived from Dc

i−1, i.e., it is condi-

tional to the number of nodes reachable in (i− 1) hops. Although theoretically we

69

can derive Dc
i in this way, the expression is going to be computationally difficult,

because the node degrees depend strongly on the specific positions of the nodes in

the network. Instead, we try to estimate the expected node degree, E[Dc
i]. This

requires the basic assumption that nodes are connected in the network. We first

study under which circumstances and requirements nodes are connected and set our

modeling assumptions accordingly. Then we study the multi-hop communication

range. Based on the area of i-hop communication range and the node density, we

obtain the expected multi-hop node degree.

Modeling Assumptions of Circular-structured Networks

First, we study the requirements for a connected network and determine the related

assumptions. The network we want to model analytically is a random geometric

graph, as introduced in Section 4.1.1, where N nodes are randomly and uniformly

distributed in a certain area S. Although in reality the communication between two

nodes is subject to various kinds of time- and place-dependent propagation effects, to

simplify the analytical modeling, the communication range of nodes is often assumed

as a fixed value so that a network can be modeled as a random geometric graph [5,

34]. In this thesis, we also assume for each node a fixed communication range r. The

graph is connected when there is at least one path between any given pair of nodes.

In contrast, when some nodes are isolated from the rest of the network, the network

is called disconnected. A disconnected network contains several sub networks that

cannot reach each other. According to the study from [5], the probability that the

network is connected, pc, is related to the node communication range and node

density, as:

r ≥

√√√√− ln
(

1− p
1
N
c

)
nπ

, (4.4)

where n = N
S

is the average node density, and r is the communication range. (4.4)

shows that the network is connected with probability pc, when the communication

range of nodes r equals or is larger than the right side of the inequality sign, given

the specified network density.

In our analytical model, we assume that the network is connected. If in reality,

70

some isolated nodes exist, this may have a significant influence on the network costs

analysis. Nodes that are not connected do not generate extra traffic throughout the

network. As a consequence, the number of exchanged packets is overestimated if

the network is not connected. However, we assume a high density network for

which there is a high probability that the network is k−connected (k > 1).

For example, if the study area is 100 m2 and the communication range r equals

300 meters, we need a node density of at least 7.45 × 10−4(node/m2) to generate

1-connected graphs with 95% (confidence) probability. This density is realistic for

quite some scenario’s. If devices in MANETs are connected with Bluetooth or IEEE

802.11n, which have an indoor communication range of at least around 70 meters

[7, 42], a network established in a normal office environment can be considered as

high density. A network established in a conference meeting can be considered as

very high density. A network established in a office environment after working time

(when only one or two devices are switched on at one floor) should however be

considered low density.

i-hop Communication Range in Circular Structured Networks

Then we study the area where the ith hop nodes are located. Suppose we have

node A with communication range r, as shown in Figure 4.2(a). We can define

concentric circles with radius ir (i = 1, 2, 3, . . .) that have A as center. We define

Ri to represent the annulus of the outer circle with radius ir and the inner circle

radius (i − 1)r. Node A can reach all the nodes located within a radius r. Node

B is located within the annulus R2. It is within 2r of A, but outside the direct

reach of A. It therefore will only reach A, if and only if there is a node C located

within the intersection area SAB of the communication ranges of A and B. This is

also illustrated in Figure 4.2(a).

The distance between A and B, dAB, lies between r and 2r. When dAB equals

2r, circle A and circle B are tangent, as is shown in Figure 4.3(a). In that case,

the area of the intersection between circle A and circle B, SAB, is 0. When dAB

is smaller than 2r, circle A intersects with circle B. The intersection area, SAB

increases, while dAB decreases. When dAB approaches r, SAB is maximum, and

according to the trigonometry shown in Figure 4.3(b), the intersection area is then

equal to (2
3
πr2 −

√
3
2
r2). Hence, the intersection area of circles A and B, SAB, lies

71

A

B
SAB

R2
C

(a)

A

E
SAE

SF2
F

R2

R3 D

(b)

Figure 4.2: (a) A and B are connected through C; (b) A and F are connected
through E and D.

between 0 and (2
3
πr2 −

√
3
2
r2).

The probability that an arbitrarily chosen node lies in the intersection area, SAB,

is simply p = SAB

S
. Since we have assumed that nodes are randomly distributed in

the network with average node density n = N
S

, the number of nodes located in the

intersection area SAB is Bernoulli distributed with expectation equal to N · p. For a

large network area with high density, N is generally larger than 20, while p is smaller

than 0.05. According to [33], in such a high density network, the number of nodes

located in the intersection SAB can be well estimated by a Poisson distribution with

λAB = N · p = N · SAB

S
= SAB · n. The probability that there is at least one node

located in area SAB, P (NAB > 0), corresponds to the probability of having a path

between A and B. This probability equals 1 minus the probability that no node is

located in the area SAB:

P (B is a 2-hop neighbor of A|B is in R2) = P (NAB > 0)

= 1− P (NAB = 0).
(4.5)

Since the number of nodes is Poisson distributed, (4.5) can be rewritten as:

P (NAB > 0) ≈ 1− e−λAB = 1− e−SAB ·n (0 < SAB <
2

3
πr2 −

√
3

2
r2). (4.6)

We can observe that given an intersection area SAB, the probability, P (NAB > 0),

is a concave function of n, with P (NAB > 0) = 0 for n = 0, and P (NAB > 0) goes

72

A B

2r
r

(a)

A B

r

r
√3r

(b)

Figure 4.3: (a) A and B are tangent; (b) A intersects B with dAB = r.

to 1 when n goes to infinite. This implies that with almost 100% probability there

is a path between node A and B if the node density is very high.

lim
n→∞

P (B is a 2-hop neighbor of A|B is in R2) = 1. (4.7)

Let us now have a look at node F in Figure 4.2(b), which is located within

annulus R3. Node F can reach node A, if and only if there is at least one node E

located within the communication range of node F, which has a connection to node

A. Therefore, the probability that node F is a 3-hop neighbor of A can be expressed

as:

P (F is a 3-hop neighbor of A|F is in R3)

= P (∃E : d(E,F) ≤ r ∧ E is a 2-hop neighbor of A|F is in R3).
(4.8)

Figure 4.2(b) shows that if node E is located outside the annulus R2 of A, the

probability is 0 that E is a 2-hop neighbor of A and a direct neighbor of F. To be

a 2-hop neighbor of A, and a direct neighbor of F, E should be located within the

annulus R2 of A, and within R1 (r) of F. Since the intersection area between R2 of

A and R of F is positive and finite, from (4.7), we can obtain the probability that

F is a 3-hop neighbor of A when the network density goes to infinite:

lim
n→∞

P (F is a 3-hop neighbor of A|F is in R3)

⇒ lim
n→∞

P (∃E : d(E,F) ≤ r ∧ E is in R2|F is in R3).
(4.9)

73

Since n goes to infinite, we have:

lim
n→∞

P (∃E : d(E,F) ≤ r ∧ E is in R2|F is in R3) = 1. (4.10)

In a similar way, we can deduce the probability that any node X located in Ri

is an i-hop neighbor of A as:

lim
n→∞

P (X is an i-hop neighbor of A|X is in Ri)

= lim
n→∞

P (∃Y : d(Y,X) ≤ r ∧ Y is (i− 1)-hop neighbor of A|X is in Ri)

= lim
n→∞

P (∃Y : d(Y,X) ≤ r ∧ Y is in Ri−1|X is in Ri)

= 1.

(4.11)

(4.11) demonstrates that, given node X is located in Ri, in a high-density network,

X is an i-hop neighbor of A with almost 100% probability. The network is thus

connected if the network density goes to infinite. Moreover, each pair of nodes

is connected through a minimum number of intermediate nodes. Since node X is

situated in Ri, the distance between node A and X is between (i−1)r and ir. Given

a communication range of r, we therefore need at least (i−1) nodes to connect node

A with X. The length of the (absolute) shortest path between node A and X is thus

i hops.

When the network density is high enough so that the network is a k-connected

((k > 1)) graph with high probability, there is high chance that there exist multiple

i-hop paths between the central node and most of the nodes within annulus Ri. The

higher the network density is, the higher this probability is. Therefore, adding or

removing a node in the network will not influence the length of the shortest path

between most pairs of nodes. Suppose that there is only one shortest path between

two nodes. The probability of removing a node in a high-density network that breaks

this shortest path is extremely low, because this probability is proportional to 1
n
. We

therefore assume that removing a node in a high-density network does not change

the length of the shortest paths.

Furthermore, according to (4.11), in a high-density network, the probability that

a node located in Ri of A is the i-hop neighbor of A, is approximately 1. That implies

that the i-hop communication range of node A is approximately ir in a high-density

network, which can be represented as:

lim
n→∞

(i-hop communication range of A) = ir. (4.12)

74

Therefore, in this dissertation we can apply ir as our approximate i-hop com-

munication range of node A under the assumption of a high-density network which

is at least k-connected. The accuracy of this approximation depends highly on the

actual network density. The accuracy increases when the network density grows.

This will also be confirmed by the experiments in Section 4.5.

Mean Multi-hop Node Degree of Circular Structured Networks

For a circular structured network, we denote the number of nodes that can be

reached in the exactly i hops and not in fewer hops, as Dc
i . These nodes are located

in the annulus Ri with outer circle radius ir and inner circle radius (i − 1)r. The

area of the annulus can be obtained as the difference of the areas of the two circles.

The expected value of Dc
i for a high-density network can be derived from:

lim
n→∞

E[Dc
i] =

1, i = 0,

n

(
π(ir)2 − π

(
(i− 1)r

)2)
= (2i− 1)nπr2, i > 0.

(4.13)

The expected total number of reachable nodes in i hops is N c
i =

∑i
j=0D

c
j , which for

a high-density network results in:

lim
n→∞

E[N c
i] = lim

n→∞
E[

i∑
j=0

Dc
j] = lim

n→∞

i∑
j=0

E[Dc
j] =

i∑
j=0

lim
n→∞

E[Dc
j]

= 1 +
i∑

j=1

(2j − 1)nπr2 = 1 + nπr2
i∑

j=1

(2j − 1)

= 1 + nπr2
(

2
i∑

j=1

j − i
)

= 1 + nπr2i2.

(4.14)

4.2 Cost Functions

To evaluate the performance of our protocol, we observe the traffic load of every

node. Traffic load is not only an indicator to bandwidth usage of the network,

but also is one of the major sources of battery usage [44]. We aim to develop

75

an expression for the total cost of transmissions in bits per second per node. In

Section 4.2.1, we introduce the assumptions and parameters used in modeling. In

Section 4.2.2, we deduce the general cost functions. We focus on false positive

probability in Section 4.2.3. Finally, we derive the packet size for both advertisement

and query packets in Section 4.2.4.

4.2.1 General Assumptions and Related Vital Parameters

In this chapter, we assume that nodes in the network update frequently. When one

node initiates an update, the other nodes might follow due to the changes from that

node. To simplify the problem here, we assume that nodes do not update upon

changes, but with a constant frequency. Consequently, nodes do not send keep-alive

messages in this case. Other nodes can notice the disappearance of one node if they

do not receive its updates for a while.

There are several vital attenuated Bloom filters parameters used in our model.

In general, we assume that each node has the same number of context information

types, s. Further, all context types are supposed to be unique, and taken out of

an infinitely large set of possible context types. The same width, w, and depth,

d, of attenuated Bloom filters, and the same b hash functions are used throughout

the entire network. Moreover, we assume that hash functions are independent and

perfectly random. Queries are forwarded by at most d hops, based on the depth of

Bloom filters. General notations are listed in the Table 4.1.

Table 4.1: Notation.

General Attenuated Bloom filter

Notation Description Notation Description

s
number of context information
types per node

w the width of the filter

µ advertisement(update) rate d the depth of the filter

λ query rate b number of hash functions

n network density (node/m2)

r communication range (m)

76

4.2.2 General Functions

We define two types of costs in the network: cost for successful querying, and

overhead cost. Cost for successful querying is caused by queries with positive results.

Overhead cost is induced by advertisements and false positive queries. The total

cost for a node is defined as the sum of the successful querying cost (Cscq) and

overhead cost (Covh). Overhead cost is the sum of advertisement cost (Cadc) and

false positive cost (Cfp).

C = Cscq + Covh, (4.15)

Covh = Cadv + Cfp. (4.16)

Cost for successful querying is the same for different kinds of discovery mecha-

nism. Therefore, in our analysis, we focus on the overhead cost. We assume that

advertisements are broadcasted periodically at a constant rate. Therefore the ad-

vertisement cost can be defined as:

Cadv = µ · adpack, (4.17)

where µ is the advertisement (update) rate, and adpack is the advertisement packet

size.

The false positive cost, Cfp, represents the transmission cost for false positive

queries incurred by a query initiated by the node under consideration. Transmission

of such query messages can take place on all links up to d hops away from the node

under consideration. Thus, we can denote the false positive cost as:

Cfp = λ ·
d∑
i=1

costfp,i, (4.18)

where we assume queries are performed at rate λ per second per node. The costfp,i

denotes the total cost of all false positive queries that are transmitted from nodes

of the (i− 1)th hop to nodes of the ith hop.

In order to obtain the false positive query cost, we have to count the maximum

possible number of query transmissions between the nodes at the (i− 1)th and ith

hop, nTrfp,i. A false positive transmission with packet size qpack is, however, only

sent when the attenuated Bloom filter of a node at the (i − 1)th hop gives a false

positive in layer (d− i) due to context information that is kept beyond the (i− 1)th

77

hop, i.e., that is stored in nodes ranging from the ith till the dth hop. We define

Pfp,j as the probability of a false positive occurring in layer j. Therefore, this false

positive will occur with probability Pfp,d−i. Note that a false positive in the layers

j < d− i automatically implies that there is a false positive in layer (d− i), because

of the duplication mechanism we defined (see Section 3.3.3). Thus, false positives in

the layers j < d− i do not have to be taken into account. A false positive in a layer

j > d− i does not result in the transmission of a query, because the final destination

of that query would be more than d hops away from the node that initiated the

query. Finally, note that the query sent to the ith hop node will reach that node

with certainty, since the false positive in layer (d− i) of the node at hop (i− 1) will

also appear in layer (i− 1) of the node that initiated the query. The resulting false

positive query cost from the (i− 1)th to the ith hop can be given as:

costfp,i = Pfp,d−i · nTrfp,i · qpack. (4.19)

The maximum number of possible transmissions between nodes (i − 1) hops and

i hops away, nTrfp,i, equals the number of newly reached nodes in the (i − 1)th

hop times the average number of direct neighbors, which have not been reached yet.

We can calculate these numbers by using the node degree Di, which was derived in

Section 4.1. For i = 1, this is:

nTrfp,1 = D1. (4.20)

For i > 1, we have to take into account that one of the neighbors is not a new

node, but that it is the neighbor that sent the query packet. In fact, nodes that

are receiving a query for the second time, will discard the query message (see Ta-

ble 3.5 for pseudo-code of parallel querying). Therefore, each query message will be

forwarded to at most (D1 − 1) nodes, which have not received the message before.

Note that we assume that the queried context type information is not present in

the network. Therefore, independently of the query method (parallel or sequential),

the query message will pass through all possible paths. We assume the use of the

parallel query method. The number of query transmissions done by nodes (i − 1)

hops away can thus be counted as:

nTrfp,i = Di−1 · (D1 − 1) (i > 1). (4.21)

78

4.2.3 False Positive Probability

Before we introduce the false positive probability, we first define the number of

context information types reachable in the jth hop (j ≥ 0) for both the grid and

circular structures as:

xj = s ·Nj. (4.22)

We assume that all nodes contain the same number of context type information, s.

Nj represents the node degree of the jth hop. For grid structures, we can obtain the

exact value (see Section 4.1.2), while we can only obtain an average value for the

circular structures (see Section 4.1.2). The second assumption is that all context

information types that are reachable within j are represented in the jth layer. A

context information type that is represented in a certain layer will also be represented

in all lower layers. This holds if the context information of a node is duplicated in

all layers of its advertised attenuated Bloom filter, as was described in Section 3.3.3.

Even if duplication would not be applied, the same context information will often be

present in the lower layers, because in a high-density network a context information

type at i hops away can probably also be reached via an alternative path of j > i

hops length.

At this point, it is worth mentioning again that we made an important assump-

tion regarding the hash functions. The hash functions are perfectly random, i.e.,

each bit has an equal probability to be set, independently of the combination of

used hash functions. As a consequence, two different context types can in theory

be set by the same bits. The probability that such an incidence occurs, however,

is in general negligibly small when b becomes sufficiently large. It is also possible

that the same bit is set more than once. Hence, the number of bits that represent

one context information type can also be smaller than the number of used hash

functions, b.

It is probably more efficient to assign specific hash functions to context informa-

tion types when the total amount of context information in this world is of the same

order of magnitude as b · xj or w. It is safe to assume, however, that in reality, the

total amount of context information types is much larger than b · xj or w. In that

case, the use of random hash functions is probably the most efficient and practical

way to represent context information. We therefore assert that the assumption of

random hash functions is quite realistic.

79

The assumption of random hash functions enables us to derive the probability

of generating a false positive in layer j as a result of a query, Pfp,j, in a relatively

straightforward way. Let the random variable mj denote the number of bits that

are actually set in the layer j. Clearly, 1 ≤ mj ≤ min(b · xj, w), where xj is the

number of context information types represented in layer j. We can obtain Pfp,j by

using the probabilities conditional on the number of bits set:

Pfp,j =

min(b·xj ,w)∑
k=1

P{false positive|mj = k} · P{mj = k}. (4.23)

Given that the attenuated Bloom filter does not represent the correct context in-

formation, we detect a false positive when the hashed context type from the query

has the same bits set as those in the advertised attenuated Bloom filter. Because

we assume that the hash functions are random for each context information type,

the probability that the same bit is set by both (different) hash functions is k
w

. The

probability of a false positive, i.e., the probability that the same b bits are set in

both single filters is thus:

P{false positive|mj = k} =

(
k

w

)b
. (4.24)

The probability that exactly k bits are set in the Bloom filter, given that a bit is set

b · xj times, is the quotient of

• the total number of ways to set exactly k different bits out of w bits after

setting a bit b · xj times

• the total number of ways to set bits b ·xj times, given w possible bit positions;

The denominator is equivalent to choosing b · xj times an element out of w, with

replacing the element each time. This equals wb·xj .

It is more complicated to derive the numerator. The total number of ways to set

exactly k bits out of w bits after b · xj times is the product of

• the number of ways to partition b · xj elements into k non-empty groups;

• the number of permutations of k elements out of a total set of w elements;

80

In combinatorics, the number of ways to partition a set of n elements into k non-

empty subsets is determined by the Stirling number of the second kind, S(n, k), in

this case:

S(b · xj, k) =
1

k!
·

k∑
l=1

(−1)k−l ·
(
k

l

)
· lb·xj . (4.25)

The k subsets in which the b ·xj elements are partitioned have unique identities,

e.g., subset 1, subset 2, . . . , subset k. Therefore, when in the second step, k elements

are selected from a set of w elements, the order of selection must be taken into

account. The second factor is thus a permutation rather than a combination, and

it can be denoted as w!
(w−k)! . Combining all the steps, we derive P{mj = k} as:

P{mj = k} =
S(b · xj, k) · w!

(w−k)!

wb·xj
, (4.26)

This yields the following equation for the false positive probability in layer j:

Pfp,j =

min(b·xj ,w)∑
k=1

(
k

w

)b
·
S(b · xj, k) · w!

(w−k)!

wb·xj

=
1

wb·(xj+1)
·
min(b·xj ,w)∑

k=1

kb · S(b · xj, k) · w!

(w − k)!
.

(4.27)

Formula (4.27) is computationally complex, especially for large values of b and w.

Therefore, we seek to approximate it. Experiments show that the probability density

function of m peaks around its mean when b·xj is small compared to w. In that case,

we can approximate (4.23) by taking the false positive probability at the expected

value of mj, rather than adding the probabilities for all mj:

Pfp,j ≈ P{false positive|mj = E{mj}}. (4.28)

The expected number of bits set at layer j of the Bloom filter can be expressed by:

E{mj} =

(
1−

(
1− 1

w

)b·xj)
· w. (4.29)

Since (1−1/w)b·xj can be approximated by e−b·xj/w when b ·xj is small compared to

w [8], we can substitute (4.24) and further approximate the false positive probability

as follows:

Pfp,j ≈ (1− e−b·xj/w)b. (4.30)

81

Note that in literature (e.g., [6, 8, 3, 51, 61]), the first approximation step (as

expressed in (4.28)) is sometimes presented as being exact. This is not the case, as

we have shown in [52, 50]. In order to evaluate the accuracy of the approximation,

we do some numerical tests for realistic parameter values. We set j = 2 and s = 1,

so that xj = 13 when considering a grid network (4.3). This implies that 13 context

information types are represented in the Bloom filter. Figure 4.4 shows the exact

probability Pfp,2 (4.27) by solid lines and the approximate value (4.30) by dashed

lines. The probability Pfp,2 is shown as a function of w for several values of b. The

false positive probability Pfp,2 decreases with w. The exact false positive proba-

bility is slightly higher than the approximate one, especially for low w. However,

the difference between the exact and approximate Pfp,2 is getting smaller when w

increases.

The relative difference between the exact and approximate values is shown in

Figure 4.5. We use Pfp,2 to denote the exact value and P ∗fp,2 to denote the approx-

imate results. Figure 4.5 depicts the relative inaccuracy of the approximation, PR,

as function of w, defined as:

PR = (Pfp,2 − P ∗fp,2)/Pfp,2 × 100%. (4.31)

For small w, the relative inaccuracy increases with w until a maximum relative

inaccuracy is reached. Afterwards, the relative inaccuracy decreases with w. The

value of w for which the relative inaccuracy is maximal varies with b · xj, but in all

cases the maximum is reached when w is still smaller than b · xj. When w is larger

than b · xj, the relative inaccuracy of the approximation becomes smaller. In the

optimal situation, we are seeking for a reasonable size of attenuated Bloom filters

(w and d) with a certain capacity (b and xj) that causes few false positives without

generating large packets to be advertised. In most cases, it holds that w > b · xj,
especially for small j. In any case, the relative inaccuracy appears to be small. We

therefore assert that (4.30) can be used to estimate the minimal overhead network

cost in our model.

4.2.4 Packet Size

To complete the performance model, we have to specify the packet sizes for adver-

tising and querying. We assume that Ahoy runs on top of UDP. The advertisements

82

 2,fpP

2,fpP

Figure 4.4: Comparison between the exact and approximate false positive prob-
abilities for 3 values of b(= 5, 7, and 9).

and queries have advertisement (AD) headers and query (Q) headers, respectively

. Besides these headers, the headers of the UDP, IP, and MAC layer will be at-

tached. The packet sizes of advertisements (adpack) and queries (qpack) are defined

as follows:

adpack = headerMAC + headerIP + headerUDP + headerAD + w × d, (4.32)

qpack = headerMAC + headerIP + headerUDP + headerQ + w. (4.33)

The size of the advertisement packet depends on both w and d, because a complete

attenuated Bloom filter has to be transmitted. The possibility to apply compression

to the filter is beyond the scope of this thesis. The size of the query packet only

depends on w, since we assume that queries are sent in the format of Bloom filters.

83

 P R
(%

)

Figure 4.5: Relative inaccuracy of false positive probability for increasing ABF
width w and fixed value for b(= 5, 7, and 9).

4.3 Analysis of two Reference Protocols

We evaluate the performance of Ahoy by comparing it with two reference discovery

protocols: a so-called proactive protocol and a reactive protocol.

The proactive protocol floods all network nodes within d hops with a complete

description of all context information. Nodes therefore have complete knowledge

about context information in the network, which implies that nodes can directly

send queries to nodes that contain the required information. The advertisement

cost is the main concern in this situation. We assume that each context information

type can be presented in c bits, and that each node broadcasts its advertisement

within a (d−1) hop range. Hence, we can derive the discovery cost for the proactive

protocol, costproact, as:

costproact = µ ·Nd−1·
(headerMAC + headerIP + headerUDP + headerAD + s · c). (4.34)

In the case of the reactive protocol, nodes do not advertise context information

types in advance. An incoming query is forwarded to all neighbors. Nodes do not

84

have any idea about context information in the network. The queries are spreading

throughout the whole network, up to d hops from the initiator. There is no way to

stop forwarding queries without generating more traffic in the network, even though

the querying node has already received an answer. The cost for querying is counted

as the cost for broadcasting queries to all nodes in the network. All nodes up to d

hops away will receive such a query, apart from the node that initiated the query.

The number of transmissions is therefore equal to the total number of nodes within d

hops minus 1. The discovery cost for the reactive protocol, costreact, can be obtained

as:

costreact = λ · (Nd − 1)·
(headerMAC + headerIP + headerUDP + headerQ + c). (4.35)

4.4 Experimental Results

We implemented the model described in Section 4.2.2 in Matlab 7.1 to evaluate the

performance of Ahoy. We focus on the overhead network cost of the proposed system

and its alternatives. Therefore, we assume that the context information types that

are queried for are not present in the network, i.e., the cost for successful querying,

Cscq = 0.

Experiment 1 is designed to obtain the optimal cost by choosing the proper

width of the Bloom filter, w, and the optimal number of hash functions, b, given the

depth of the filter, d, advertisement rate, µ, query rate, λ, and number of context

information types per node, s. In experiments 2, 3, 4, and 5, we study the impact

by varying certain parameters, i.e., the query rate (λ), the query range (d), the

information density (s), and the network density (n).

As we introduced in Section 4.1.1, we use two network structures: grid and

circular-structured network. Experiments 1 and 2 are done on both network struc-

tures. Compared to the communication range, a grid-structured network has a

predetermined network density, which restricts the possibility of observing Ahoy’s

performance related to different network densities. Compared to the grid structure,

the circular structure has the advantage that the number of neighbors of a node is

85

not fixed. Therefore, the three other experiments (experiment 3, 4, and 5) are only

being done for the circular structure.

For a fair comparison between the grid and circular structure in experiments 1

and 2, we use a node density at which the circular and grid structure resemble each

other the most. This is the case when the i-hop node degrees in both grids are equal,

N g
i = N c

i :

1 + 2i(i+ 1) = 1 + nπr2i2 (4.36)

⇒ nπr2 =
2i(i+ 1)

i2
= 2 +

2

i
(i > 0). (4.37)

If i is large, the circular structure corresponds with the grid structure for:

nπr2 ≈ 2. (4.38)

In all the experiments below, we assume that each context information type can be

represented in 32 bits, i.e., c = 32 bits. The sizes of headers are assumed as follows

headerMAC = 256 bits [38]; headerIP = 320 bits (assuming the use of IPv6 [43]);

headerUDP = 64 bits [21]; headerAD = 32 bits; headerQ = 192 bits.

4.4.1 Basic experiments

Experiment 1

In this experiment, we aim to obtain the optimal network cost, its corresponding

size of the ABF (w), and the number of hash functions (b) for each query range

d, given fixed advertisement and query rates µ and λ and number of context type

information per node s. The query range d refers to the number of hops that a query

travels. This number should be equal to the depth of the ABF, which therefore is

also denoted by d. Based on our derivation in Section 4.2, the network cost is a

function of the width of the filter w and the number of hash functions b, given

certain values for d, λ, and s. Due to the discrete values of w and b, we are able

to calculate the network cost of each pair of w (from 1 to 216 bits) and b (from 1

to w/xi). We thus obtain the minimal network cost without using an optimization

algorithm. In this experiment, we set an advertisement rate of µ = 0.1 and a query

rate of λ = 0.1, and one context information type per node s = 1. The filter depth

d varies from 3 to 10.

86

In Table 4.2 and Table 4.3, we show the minimum network costs in bit/s for

the grid and circular network structure respectively. We show the cost for Ahoy,

the proactive protocol, and the reactive protocol (using the same parameter set-

tings). From Table 4.2 and Table 4.3, we conclude that for each d, optimal values

for the width, w, and number of hash functions, b, lead to minimum network costs

that are lower than those for the proactive and reactive protocols. Ahoy reduces

network traffic due to overhead with about a factor 10 to 20 compared to the proac-

tive and reactive protocol respectively. Ahoy therefore improves the network traffic

enormously when nodes advertise and query context information every 10 seconds.

The last columns of Table 4.2 and Table 4.3 show the maximum number of

context information types that are to be represented in one Bloom filter (xd given

d). The density of the circular network is chosen such that the node degree is

equal to the network density of grid networks for large distances. For larger d, the

maximum number of context information types is therefore more or less equal for

both network structures. However, for small d, less context type information is

stored for the circular structured network than for the grid network. As a result,

a larger attenuated Bloom filter is needed for the circular structured network, and

slightly more network cost is generated than is indicated in the fourth column of

Table 4.3.

87

Table 4.2: Optimal ABF cost compared with the proactive and the reactive
protocols (grid structure).

d
w

(bits)
b

Optimal
Ahoy cost

(bit/s)

Proactive
protocol (bit/s)

reactive
protocol (bit/s)

Maximum number
of context

information types
in ABF

3 96 5 107 915 2074 13
4 160 5 155 1760 3456 25
5 256 5 230 2886 5184 41
6 352 5 341 4294 7528 61
7 448 5 495 5984 9677 85
8 608 5 701 7955 12442 113
9 736 5 967 10208 15552 145
10 928 5 1304 12742 19008 181

Table 4.3: Optimal ABF cost compared with the proactive and the reactive
protocols (circular structure).

d
w

(bits)
b

Optimal
Ahoy cost

(bit/s)

Proactive
protocol (bit/s)

Reactive
protocol (bit/s)

Maximum number
of context

information types
in ABF

3 64 5 89 634 1555 9
4 96 4 116 1338 2765 19
5 128 4 158 2323 4320 33
6 192 4 222 3590 6221 51
7 256 4 312 5139 8467 73
8 320 4 435 6970 11059 99
9 416 4 597 9082 13997 129
10 512 4 804 11475 17280 163

88

Experiment 2

In experiment 1, we showed that simple and efficient Bloom filters can reduce the

network load significantly. However, so far we only used one combination of update

frequency µ, and query rate λ. Redundant traffic due to false positives may lead

to problems when the query rate increases. We expect that there exists a (high)

value for λ at which the costs due to false positives outweighs the benefits of using

Bloom filters. In contrast, if the query rate is very low, and only few queries are sent

through the network, there is no benefit to broadcast the context information. The

reactive protocol might perform better in that case. In this experiment, we study

for which range of µ and λ Ahoy is optimal. This enables us to achieve a favorable

network cost by using the most suitable protocol under all circumstances.

As a reference, we set µ equal to 0.1 /sec, and change the value of λ to tune the

ratio λ/µ. First of all, we study the case in which d is equal to 5. For both the grid

and circular structures, we analyze the situation in which each node has only one

unique context information type (s = 1). The results are shown in Figure 4.6(a) and

Figure 4.6(b), respectively. They clearly demonstrate the range of λ/µ where Ahoy

generates the least of overhead cost. To show the impact of the ratio λ/µ, overhead

cost presented in the y axis of the both figures is also divided by µ accordingly.

Moreover, both axes have a logarithmic scale. Both figures show that for medium

and large values of λ/µ, the Ahoy context discovery algorithm generates less traffic

than the traditional proactive and reactive algorithms. For both networks, network

cost is lower for Ahoy than for the reactive protocol when λ/µ is larger than 0.1,

i.e., if queries are generated at least once per 10 advertisement periods. The cost

difference between the two algorithm increases exponentially with λ/µ. On the other

hand, the difference between Ahoy and the proactive algorithm decreases with λ/µ.

In the range shown by the figures, however, Ahoy always performs better. If we

would extrapolate both cost curves, we would find a very high value of λ/µ (much

larger than 108) beyond which the proactive protocol is more cost effective.

We extended the experiments by varying d from 3 to 10. Similar results are

obtained as for d = 5, as are shown in Figure A.1 in Appendix A. In the range

of medium and high values of λ/µ Ahoy generates less network traffic than the two

traditional algorithms. When d increases, the amount of traffic is increasing. The

relative increases are more or less the same for all protocols. For d = 10, Ahoy

89

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(a) Grid structure

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(b) Circular structure

Figure 4.6: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d = 5 and s = 1.

outperforms the reactive protocol when λ/µ is larger than about 0.01. For large

λ, the relative increase in cost is somewhat larger for Ahoy than for the proactive

protocol. Probably this is the result of extra traffic due to false positives. Note

however, that for small λ, the relative cost difference between the proactive protocol

and Ahoy increases rather than decreases with d. The differences between d = 3 and

d = 10 are however very small. In all cases, the range for which Ahoy outperforms

both other protocols is quite comparable with that for d = 5.

We also increase the context information density s, and assume s = 4. The

network then requires larger Bloom filters to contain more information. Figure A.2

in Appendix A shows the results. Similarly to the situation where s = 1, there

exists a large range in λ/µ for which Ahoy generates less network cost than the

traditional protocols. As might be expected, this range becomes smaller when the

information density s increases from 1 to 4 (see Figure A.1 and A.2). When d = 3,

Ahoy outperforms the traditional protocols for λ/µ between 0.1 and at least 108.

When d = 10, the range is from 0.1 to 1000 in the grid-structured network, and 0.01

to 4000 in the circular-structured network.

The results show that Ahoy has a better performance in terms of generating

less traffic in most realistic situations, i.e., in the situation where the frequencies of

90

sending out advertisements and queries are close to each other. The exact range can

be calculated from our model, and varies slightly with different query range d and

information density s.

4.4.2 Extensive experiments

The previous two experiments have shown that Ahoy performs quite well. In the

following experiments we further evaluate the performance of the different proto-

cols as function of the discovery range d, and the information density s. We also

study the impact of node density n on the network cost. In the following three

experiments, we only use circular structured networks. There are two reasons for

this choice. First, a circular structured network resembles reality more closely than

a grid structured network. Secondly, the network density can be varied in circular

structured networks, whereas a grid structured network only has one fixed network

density with respect to the communication range. Also, from now on, we only show

the overhead cost on a linear scale, because in practice we are mainly interested in

absolute cost differences between protocols.

Experiment 3

With a larger discovery range d, more context information types are available for

the querying node. On the other hand, the size of the attenuated Bloom filters will

also increase. In this set of experiments, we study the impact of d on the overhead

network cost.

We vary the depth of the Bloom filter, d, from 3 to 10, and compare the per-

formance for different values of s and λ (fixed µ = 0.1). Figure 4.7 displays the

network costs as function of d given that s = 1 and λ = 0.1. Ahoy generates less

network traffic than both the proactive and reactive algorithms. The absolute dif-

ference in network costs increases with d, i.e., the cost increases much faster for the

other two alternatives than for Ahoy. The cost for Ahoy increases slightly with d.

When d = 3, Ahoy generates 545 bit/s less than the proactive algorithm and 1466

bit/s less than the reactive algorithm. When d = 10, Ahoy generates 10671 bit/s

less than the proactive algorithm and 16476 bit/s less than the reactive algorithm.

However, it should be noted that the relative increases in cost are quite comparable

for the different protocols, as was shown in experiment 2.

91

3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

Figure 4.7: Overhead cost of Ahoy, the proactive and reactive protocols while
varying the ABF depth, d and setting s = 1, λ = 0.1, µ = 0.1.

Next, we evaluate more general cases with λ equals to 0.0001, 0.001, 0.01, 0.1,

1, 10, 100, and 1000, respectively. The experiments were done for both s = 1 and

s = 4, as is shown in Figure A.3 and Figure A.4 in Appendix A respectively. The

results show that, in general, the Ahoy algorithm generates less network traffic than

both the proactive and reactive protocol. The performance of Ahoy compared to

the other protocols is strongly related with the query rate (λ) and the number of

context type information within the query range (this depends on both d and s).

When the number of context information types is very small, the network cost is

relatively large in Ahoy compared to the reactive protocol. However, the reactive

protocol only outperforms Ahoy for very small (λ = 0.0001 and λ = 0.001). For all

other query rates, Ahoy has less network cost than the reactive protocol. In contrast,

when the query rate is quite high, the cost of Ahoy increases significantly and may

be more than the proactive protocol. However, this is only the case when s = 4,

λ = 1000, and d > 9. For all other cases, Ahoy outperforms the proactive protocol.

Note that for high λ the relative increase in cost with d is lower for the proactive

protocol than for Ahoy (as has already been shown in experiment 2). Therefore, the

proactive protocol might score somewhat better if we would increase the range, d.

The results from Experiment 3 confirm the results of Experiment 2. Ahoy can

save network costs compared to the two other alternatives. There exists an upper

92

and lower bound of d for the optimal performance of Ahoy, which depends on the

query rate (given that the advertisement rate is fixed), and the number of context

information types within the query range. The latter depends on the query range d

and the number of context information types per node s.

Experiment 4

The previous experiments show that the number of context information types per

node s also has an influence on the network cost. In this set of experiments, we

investigate this in detail. We examine the network costs as function of s. For

different values of d and λ (with fixed µ), we change s from 1 to 6, i.e., the number

of context sources within the query range increases from 51 to 306. We start the

study again with a realistic situation where d = 5, λ = 0.1, and µ = 0.1. The result is

shown in Figure 4.8. Ahoy generates the least network traffic among three algorithms

as expected. The network costs of Ahoy and the proactive algorithm exhibit a slight

increase with increasing s. Note that the cost of the reactive protocol stays the

same, because it is only related to the number of node in range, the query rate, and

the query packet size.

1 2 3 4 5 6
0

1,000

2,000

3,000

4,000

5,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

Figure 4.8: Impact of the context type density, s, on the overhead cost of Ahoy,
the proactive and the reactive protocols, while d = 5, λ = 0.1,
µ = 0.1.

93

Next, we model the three algorithms for λ equals to 0.001, 0.01, 0.1, 1, and 10,

respectively, and for d = 3, d = 5, and d = 10. The results are shown in Figure A.5

to A.7 in Appendix A. In most cases, Ahoy generates much less network costs than

the other two algorithms. There are only a few exceptional situations in which

Ahoy generates more network traffic than the reactive algorithm. This occurs when

d =3, or 5, and λ = 0.001 (see Figure A.5(a) and Figure A.6(a)), and when d = 10,

λ = 0.001, and s > 3 (see Figure A.7(b)). The figures show that Ahoy generates

less network traffic than the proactive algorithm in all current experiment settings.

However, for d = 10 and λ = 10, we can expect that the network cost of Ahoy will

exceed the cost of the proactive algorithm when s is larger than 6, because the cost in

Ahoy increase faster with s than those in the proactive protocol (see Figure A.7(g)).

These results are consistent with the results from Experiments 2 and 3. Obviously,

within a certain boundary, Ahoy performs better in terms of network traffic than

the alternatives. As mentioned before, the optimal range for Ahoy depends on the

query rate and the number of context information types within the query range. The

figures from experiment 3 show that the effect of s on the network cost is relatively

mild compared with that of d, given that the other parameters are the same.

Experiment 5

In the previous experiments, we used a network density of nπr2 = 2, i.e., an average

node has 2 neighbors in a circular structured network. The previous experiments

have shown a relationship between the number of context information types in the

query range and the performance of Ahoy. Therefore, we anticipate that network

densities also influence the network cost directly. In the circular structured model,

we can easily vary this parameter. The number of nodes within communication

range was varied from 2 to 20, which implies that nπr2 = 2 to 20. The other

parameters were set as follows: λ = 0.1; µ = 0.1; d = {3, 5, 7, 10}. We did two sets

of experiments with s = 1 and s = 4.

We present the relation between network cost and network density when s = 1

in Figure 4.9. The results when s = 4 are similar as when s = 1, and are presented

in Figure A.8 in Appendix A. The results show that, in general, the costs increase

almost linearly with the number of direct neighbors. The relative increase is more

or less the same for all protocols. Because Ahoy performs better than the other two

94

protocols, the network cost of Ahoy increase slower in absolute terms. Ahoy therefore

also performs significantly better when densities are very high.

In this experiment, we also confirm the boundaries within which Ahoy performs

better than the other two alternatives. As was shown previously, the boundaries

are related to the query rate and the amount of context information within the

query range. Beyond the boundaries, Ahoy generates more network traffic than the

alternatives. At the lower boundary, Ahoy and the reactive protocol perform equally

well. This is the case, for example, when λ = 0.003, s = 4, d = 3, and the number

of neighbors is 4. When the density decreases, querying by the reactive protocol

becomes relatively cheap. For λ = 0.003, s = 4, and d = 3, the reactive protocol

therefore outperforms Ahoy when each node has on average fewer than 4 neighbors.

This is illustrated in Figure 4.10(a). Contrarily, in a dense network with frequent

queries (upper boundary), Ahoy generates more network traffic than the proactive

protocol. For example, when λ = 100, s = 4, and d = 10, the proactive protocol

outperforms Ahoy when each node has at least 4 neighbors. This is illustrated in

Figure 4.10(c). The cost for the reactive protocol fall off this chart and are therefore

shown separately in Figure 4.10(b).

4.4.3 Summary

In this section, we used an analytical model to investigate the performance of the

Ahoy protocol in terms of generated traffic. We studied the performance of Ahoy

in two different network structures: a simple grid network and a circular network

which represents a fully distributed ad-hoc network. We focussed on the overhead

costs. These are the combined costs of advertising and querying in case the requested

information is not available. In Ahoy unsuccessful queries are also related to false

positives. For both networks we were able to set the optimal parameters for Ahoy

in which there is a balanced trade-off between the number of false positives and the

size of the Bloom filters.

In a comparison with the proactive and reactive protocols, we find similar results

for both network structures. Ahoy performs better than the traditional algorithms

within certain boundaries which are associated with the ratio of query and adver-

tisement rates, the query range, the density of context information sources, and the

node density. For each setting of network parameters, our model can compute the

95

boundaries and obtain the optimal ABF settings (including w and b) that generate

the minimum network cost. Results demonstrate that for most practical situations,

Ahoy requires significantly less (up to an order of magnitude) traffic load than the

proactive and reactive protocols. This is very beneficial for MANETs, because this

indicates that Ahoy consumes less bandwidth and battery usages of nodes in the

network. As such, it comprises a very effective and efficient protocol for real world

applications.

96

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) d = 3

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) d = 5

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) d = 7

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) d = 10

Figure 4.9: Impact of network density, n, on the overhead cost of Ahoy, the
proactive and the reactive protocols, while s = 1, λ = 0.1, µ = 0.1.

97

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) d = 3

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 108

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) d = 10

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 105

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) d = 10

Figure 4.10: Boundary of Ahoy in terms of network density while s = 4 and
µ = 0.1. λ = 0.003 in the upper panel, and λ = 100 in the lower
panel.

98

4.5 Model Validation

With the analytical results from Section 4.4 we are able to find the optimal parameter

settings for Ahoy, and to estimate the network conditions under which Ahoy performs

optimally, i.e., better than other protocols. In this section, we use a simulation [28]

to evaluate the accuracy of our analytical model.

The evaluation is done by comparing the overhead cost observed in a detailed

simulation study with our analytical model. We first introduce this simulation in

Section 4.5.1. Next, we show that the overhead cost from both models are equivalent

to each other in Section 4.5.2. In Section 4.5.3, we address the simulation setup

used for comparison. In Section 4.5.4, we present the results from both analytical

model and simulations and analyze them. Finally, we conclude the validation in

Section 4.5.5.

4.5.1 Brief Introduction to Simulation Model

The simulation model [28] has been implemented in the discrete-event simulator

OPNET Modeler [63] version 11.5. A MANET node from the OPNET model library

was modified to support our protocol. All nodes utilize the IEEE802.11b standard

[40] with a bit rate of 11 Mbps for communication with each other. The discovery

protocol is built on top of UDP over IPv4. Note that we utilize IPv4 instead of IPv6

here, because when the simulation model was implemented, OPNET 11.5 was not

good enough to support modeling on top of IPv6.

In this section, we validate the analytical study for the grid structured network.

For the circular structured networks, the comparison between simulations and ana-

lytical results will be covered in detail in Chapter 5. In grid structured networks, we

can precisely count the number of transmissions for each hop. We build a network

of 61 nodes with every node having 4 direct neighbors in the transmission range.

The center node can reach any node in the network within 5 hops. The maximum

communication range is 300 meters. To have a good comparison result with our

analytical model, it is assumed that nodes beyond 300 meters are not interfered by

the transmission, nor will their carrier sense the transmission.

The random generator from OPNET is utilized for all random generations in

our model, including both time and text strings. No retransmission mechanism for

99

broadcast packets has been implemented when collisions occur in Ahoy. The mes-

sages are unsynchronized, i.e., they are sent at random moments. Random text

strings are generated to represent the context information types. Context informa-

tion types are randomly generated for every simulation run, using different seeds

for context exchange and querying. Universal hashing [11] was chosen to hash the

context information types.

We investigate the cost of false positives as well as the cost of sending advertise-

ment messages. In this section, the cost is represented by the overhead traffic that

is generated by the center node.

4.5.2 Proof of Equivalent Overhead Cost

We compare the overhead network cost from both the analytical and simulation

models in the rest of the section. Although we calculate the overhead network cost

in two models from different perspectives, in essence, they are equal to each other.

In the analytical model, the overhead cost is the sum of costs caused by packets

which are initiated by a querying node. We count all traffic that is related to the

query packets initiated by that one node. In the simulation model, the overhead

network cost is basically counted as being the number of packets that are transmitted

by one (central) node. Some of those packets are not initiated by that node, but are

the result of updating changes and forwarding queries that are initiated by other,

reachable nodes. In the following we will show that both calculations are equivalent.

The simulation overhead cost (Cs
ovh) is the sum of the advertisement packets cost

(Cs
adv) and the false positive query packets cost (Cs

fp):

Cs
ovh = Cs

adv + Cs
fp. (4.39)

The superscript s denotes that the variables refer to results for the simulations.

Cs
adv can also be written in the same way as for the analytical model in (4.17).

Therefore, we have:

Cs
adv = Cadv = µ · adpack. (4.40)

Cs
fp is caused by the false positive queries transmitted by the center node. This

includes two types of queries: queries that originate from the center node and queries

that originate from other nodes. The queries from the center node will be forwarded

at most d hops. The queries from nodes that are i hops away will be propagated at

100

most (d− i) hops further. Cs
fp can be described as the sum of queries forwarded up

to d hops away from the center node:

Cs
fp = λ ·

d∑
i=1

costsfp,i, (4.41)

where costsfp,i represents the total false positive cost for queries that are being trans-

mitted i hops further until they reach the nodes at d hops from the center node.

Those queries are thus initiated by nodes (d − i) hops away from the center node.

They are generated or forwarded if there is a false positive in the layer (i− 1) of the

ABF of the center node. The queries that are initiated by the center node (i = d,

because they will be forwarded d hops further) will be transmitted to 4 neighbors.

The queries that are initiated in the 4 · (d− i) nodes at (d− i) hops from the center

node, will be forwarded to 3 neighbors. Therefore, the total false positive cost can

be calculated as:

costsfp,i =

{
Pfp,i−1 · 4(d− i) · 3 · qpack, i < d,

Pfp,d−1 · 1 · 4 · qpack, i = d.
(4.42)

If we set j = d− i+ 1, (4.42) can be rewritten as:

costsfp,d−j+1 =

{
Pfp,d−j · 4(j − 1) · 3 · qpack, j > 1,

Pfp,d−1 · 1 · 4 · qpack, j = 1.
(4.43)

Therefore, (4.41) can be rewritten as:

Cs
fp = λ ·

d∑
j=1

costsfp,d−j+1, (4.44)

which is equivalent to (4.18) from the analytical model. Therefore, we have:

Cs
fp = Cfp. (4.45)

By substituting (4.40) and (4.45) into (4.39) and applying (4.15), we obtain:

Cs
ovh = Cadv + Cfp = C. (4.46)

We conclude that counting all query packets sent out by a single node (which

may be initiated by nodes up to (d − 1) hops away) is equivalent to counting all

query packets which are sent by nodes up to (d−1) hops away, as a result of a query

that is generated in a single node. The latter approach is taken in the analytical

model, whereas the former approach is taken in the simulation model. The cost

functions of the two different models are therefore equivalent to each other.

101

4.5.3 Comparison setup

Based on the discussion in Section 4.5.2, we configure the simulation model as follows

to achieve equivalent settings for the analytical model. We focus on the center node

in the simulation, so that we will not observe boundary effects. We want to estimate

the overhead costs. Therefore, we assume that the queried context information type

is not available in the network, as also assumed in our analytical study. We count

the number of packets that are transmitted by the center node, including periodical

broadcast packets and query packets. We divide the total number of transmitted

bits by the total simulation time (except the first 20 minutes for initialization) to

obtain the overhead network cost per node. Since context information types and

queries were randomly generated, 100 independent runs, with 10 simulation hours

per simulation, were done to calculate 90% confidence intervals of the overhead

network cost. The related analytical results are compared with the averages and the

confidence intervals from the simulations.

In the simulation experiments, nodes artificially refresh the attenuated Bloom

filters and advertise them periodically (without being triggered by the keep-alive

mechanism, to be aligned with the analytical model). We assume the advertisement

period to be 600 seconds plus a random time that was uniformly chosen between 0

and 10 seconds to reduce collisions. During one advertisement period, 600 queries

were sent. Therefore, µ = 1/605 sec and λ = 600/605 sec on average. These

averages are also used in the analytical model.

In this section, we use simulations to evaluate the accuracy of the analytical

model based on the approximation (4.30) and the exact false positive probability

(4.27). We implement the analytical model with approximate false positive proba-

bility (4.30) in Matlab 7.1. Matlab 7.1 cannot compute Stirling numbers of the 2nd

kind when the parameter b ·xj exceeds 252. Therefore, we use Maple 9.5 to calculate

(4.27), in order to achieve the overhead cost with exact false positive probabilities.

Some basic experiments parameters are set as follows: headerMAC = 256 bits;

headerIP = 160 bits (assuming the use of IPv4 [66]); headerUDP = 64 bits; headerAD =

32 bits; headerQ = 192 bits. We assume one context information type per node so

that s = 1.

102

4.5.4 Experimental Results

Three experiments have been done to compare the results from the analytical and

simulation models. Experiment 1 demonstrates the evaluation of network cost for

varying width (w) of the Bloom filters. Experiment 2 verifies the optimal value for

w and b given depth d. Finally, experiment 3 compares the network cost for Ahoy

and the proactive and reactive discovery protocols.

Experiment 1

In this experiment, we observe the network cost for different ABF widths (w). Two

sets of experiments have been done: in experiment (a), d = 3 and b = 15 (see

Figure 4.11) and in experiment (b), d = 5 and b = 13 (see Figure 4.12). In both

cases, the value of b corresponds to the optimum value according to the analytical

model.

100 150 200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

70

80

90

100

w

co
st

(b
it/

s)

Approximate formula
Exact formula
Simulation results

w(costmin)=288

Figure 4.11: Network cost for d = 3, b = 15.

The figures show that the analytical and simulation results are very close to each

other. The simulation confirms the values of w and b that yield a minimum network

load. The value of w is the same as the one from the analytical model, which is 288

bits for d = 3 and 768 bits for d = 5. The approximated results (4.30) and exact

results (4.27) are also very similar, especially when b ·xd is smaller than w, i.e., when

103

500 550 600 650 700 750 800 850 900 950 1000
6

8

10

12

14

16

18

20

22

24

w

co
st

(b
it/

s)

Approximate formula
Exact formula
Simulation results

w(costmin)=768

Figure 4.12: Network cost for d = 5, b = 13.

the false positive probability is small. The results from the exact analytical formula

are always within or very close to the 90% confidence interval of the simulation

results. Except for w < 150, the confidence intervals are very small and almost

invisible.

The figures also show that the overhead cost rapidly decreases with an increase of

w till it reaches a minimum. Beyond that minimum, the cost increases only slightly

with w. Normally we determine the value of w and b in advance (given an expected

number of available context information types in the network). We suggest to set

w at a slightly larger value than the expected optimum. A larger w only leads to

slightly more overhead cost, while a smaller w can lead to much more cost, especially

when the optimal value varies due to moving nodes.

Experiment 2

One of the purposes of the analytical models is to estimate the optimal attenuated

Bloom filter size and number of hash functions to achieve the minimum network

load. We ran a number of simulations with different values for the parameters w

and b with d equals 3, 4, and 5, respectively.

The results are shown in Table 4.4. According to the table, the values of optimal

values for w and b are exactly the same for the three models. The network costs are

104

Table 4.4: Optimal cost generated by Ahoy and the related value of w and b
when d = 3, 4, and 5.

Ahoy Approximate Ahoy Exact Simulation Results

d
w

(bits)
b

costs
(bit/s)

w
(bits)

b
costs

(bit/s)
w

(bits)
b

90% confidence
interval of costs

(bit/s)
3 288 15 2.37 288 15 2.38 288 15 (2.39, 2.40)
4 480 13 4.44 480 13 4.50 480 13 (4.54, 4.61)
5 768 13 7.92 768 13 7.94 768 13 (7.96, 8.04)

slightly different, due to differences in the estimates of the false positive probabilities.

For the optimal situation, the approximation is always underestimating the costs,

but not more than 1% compared to the exact analytical model. The costs from

the analytical models are slightly less than those from the simulation, and also just

outside the 90% confidence interval. However, the difference is not more than 1%.

According to experiments 1 and 2, the analytical and simulation models pro-

vide very similar results. The approximate and exact analytical models are both

quite accurate in achieving the optimal parameters. The exact model achieves more

accurate outcomes, especially when the costs are high. However, the approximate

model can still provide very good estimates, and is more suitable for calculations

in large networks. Furthermore, the simulation model is more suitable to test more

complicated situations, such as the dynamic networks, which will be discussed in

Chapter 5.

Experiment 3

As discussed in Section 4.4.1, the performance of attenuated Bloom filters is highly

dependent on the ratio between query and advertisement rate. For a large range of

realistic values, Ahoy achieves lower network costs than the alternative solutions. In

this experiment, we verify the results from Section 4.3 by simulations.

We assume that each context information type can be represented in 32 bits, i.e.,

c = 32 bits. We fix µ as 1/(605 sec) and vary the value of λ from 10−3/(605 sec)

to 107/(605 sec). The experiment has been done for values of d = 3. Figure 4.13

105

demonstrates the results. Note that the scale of the figure is such that sim-

ulation and analytical results of Ahoy cannot be distinguished from each

other. The experiment results show that the simulation model gives almost exactly

the same results as the analytical models. The same conclusions can thus be drawn

as in Section 4.4.1; Ahoy consumes less network traffic than the two conventional

approaches within a wide range of query rates.

-3 -2 -1 0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

lg(λ/µ)

lg
(c

os
t/µ

)

Ahoy
Proactive
Reactive
Simulation results

Figure 4.13: Overhead cost of Ahoy, the proactive and the reactive protocols for
different λ/µ.

4.5.5 Summary

In this section, we observed the overhead network cost for analytical and simulation

models in static ad-hoc networks. The overhead cost include both the periodic ad-

vertisements and false positive queries. In the analytical model, the traffic generated

by false positive queries is estimated by using formulas of false positive probability.

In the simulation, the number of false positive queries are counted in a straightfor-

ward way. The results from the analytical models are always within or very close

to the 90% confidence interval of the simulation. We therefore conclude that both

models give similar results. The approximate formula also provides very good esti-

mates. The simple mathematical computation enables the approximate analytical

model to be a good tool for computing the proper size of the attenuated Bloom filter

106

that yield minimal network costs. When we compare between Ahoy and traditional

approaches, the same conclusion as in Section 4.4.3 can be drawn. The performance

of Ahoy highly depends on the ratio between query and advertisement rates, but for

a wide range of realistic parameter settings, it generates a significantly lower (up to

an order of magnitude) traffic load than the proactive and reactive protocols.

Chapter 5

Dynamic Connectivity in Mobile
Environment

In Chapter 4, we evaluated the performance of Ahoy in networks with static con-

nectivity and discovered that Ahoy can save up to an order of magnitude of network

traffic in most practical situations. It is therefore an effective solution for ad-hoc

networks which are composed mostly of battery-supplied wireless devices without

strong processing power.

However, ad-hoc networks are in general not static but dynamic in connectivity.

This generates extra network load which may challenge the performance of discovery

algorithms. In general, three causes of network dynamics can be identified: (i) nodes

may be mobile; (ii) battery-supplied devices might exhaust their energy; (iii) the

quality of the wireless transmissions might be varying due to unstable propagation

conditions.

When a node is moving across the network, its set of neighbors is changing

continuously. A temporary lack of energy supply can cause nodes to disappear, and

worsening propagation conditions may result in broken links between nodes or lost

packets. Similarly, due to changing conditions, nodes, and/or links can reappear.

If a link between two nodes disappears, those two nodes no longer consider each

other as neighbors. If lost packets are keep-alive messages that inform about the

presence of the node, other nodes in the network may consider this node to have been

disappeared. If lost packets are updates, nodes continue routing packets with out-

dated information and generate redundant traffic. When links or nodes (re-)appear

in the network, corresponding nodes need to add new neighbors.

107

108

In this chapter, we study how these dynamics influence the amount of extra

traffic in the network. We examine both grid- and circular structured networks.

We categorize the analysis based on the different categories of network dynamics

that were mentioned above: link appearance and disappearance, node appearance

and disappearance, packet loss, and node movement. We estimate the number of

updates generated in Ahoy triggered by those dynamic factors and compare it with

corresponding situations in the proactive and reactive protocols.

In Section 5.1, we discuss the probability to update ABFs when the availability of

context information types is changed. Compared with circular-structured networks,

grid networks have simple and predictable topologies. In Section 5.2, we therefore

used grid networks to obtain insight in the extra amount of generated traffic due

to dynamics. In Section 5.3, we then extend the analytical study from Section 5.2

to circular structured networks and validate the results with simulations. Finally,

we compare Ahoy with the pro- and reactive protocols in Section 5.4. The work

presented in Section 5.3 has been published in [53, 54].

5.1 Probability of Updating

In ABFs, different context information may share the same bit positions in the filter.

As discussed in Chapter 4, this leads to false positive answers to queries. False

positives may also occur when nodes update their ABFs. If a context information

type is added or removed from a filter, there is a chance that the corresponding bits

are also being used for other context information types. In that case, the ABF is

not updated, even though the availability of context information types has actually

been changed.

The probability of false positives has been derived in Section 4.2.3. A good

approximation for the layer i false positive probability, Pfp,i, due to the addition of

one context information type, has been shown in (4.30), as:

Pfp,i ≈ (1− e−b·xi/w)b,

where xi is the number of context information types in layer i before addition, b is

the number of hash functions, and w is the width of the ABF. The probability that

109

there is no update when one context information type is added to layer i thus equals

Pfp,i. We can also calculate the probability that there is no update when several

context information types are added or removed. It is important to stress again

that we assume that the hash functions are perfectly random. This implies that

the false positive probabilities for two arbitrary (but different) context information

types are independent of each other. If vi is the number of added or removed

context information types in layer i, the probability that there is no update in layer

i, Pnoupdate,i, is therefore equal to

Pnoupdate,i = (Pfp,i)
vi . (5.1)

As a consequence, it is thus possible, but very unlikely, that exactly the same

bits are set for two sets of context information types, even if both sets contain many

different context information types. If the modified context information types from

layer k to layer l are independent of each other, the probability that no update

occurs when context information types are modified in those layers, Pnoupdate,e,f ,

equals the product of probabilities per layer, as:

Pnoupdate,k,l =
l∏

i=k

(Pfp,i)
vi . (5.2)

The probability of updating when context information types are added or re-

moved, Pupdate, is equal to 1 minus the probability of no update.

Pupdate = 1− Pnoupdate. (5.3)

Particularly, if all context information types from one node (in total, the number

of types per node, s) have been added or removed from layer i, the update probability

in this case equals:

Pupdate(i) = 1− (Pfp,i)
s . (5.4)

If all context information types from one node have been added or removed from

layer i to layer j of a node, the update probability of the node is:

Pupdate(i, j) = 1−
j∏
k=i

(Pfp,k)
s . (5.5)

110

5.2 Grid Structure

We start our analysis with the simple grid structure, where every node has exactly

4 neighbors (see Section 4.1.1). We study the number of updates generated due to

various dynamic connectivity scenarios: the disappearance and appearance of one

link and one node, and mobility of one node, in the subsections that follow.

5.2.1 Link Disappearance

Due to interference or other environmental influences, the signal strength of a con-

nection between two nodes may vary. If the signal strength is too weak, the connec-

tion is broken. When the signal strength improves, the connection is restored. In

Ahoy, the following happens after a link is broken. The nodes that were connected

by the broken link do not recognize each other as neighbors any more if they have

not received a message for two consecutive keep-alive periods. As a result, both

nodes follow case 5 defined in Section 3.5 and update their filters and broadcast

them to the other neighbors. The other neighbors within the query range propagate

these updates.

The grid structure is a fully symmetric network structure. There are multiple

paths between any pair of nodes. If a link has disappeared, there will always be

another path via which two nodes can communicate. In most of the cases, the path

length (i.e., the number of hops) will remain the same. For example, Figure 5.1

shows a grid-structured network with 9 nodes. Node A can reach Node D via Node

B or Node C within two hops. In case the link between C and D is broken, A still

can reach D via B within the same number of hops. Similarly, A can reach I within

four hops via six different routes: A→ B → E → F → I; A→ B → D → F → I;

A → B → D → H → I; A → C → G → H → I; A → C → D → H → I;

A → C → D → F → I. If the link between D and F is broken, there are still four

other routes between A and I. Since the structure of a grid-structured network is

the same everywhere, this applies to every other node in the network. In Figure 5.1,

A does not need to update the existence of D or I when link CD or DF is broken,

because the information in D and I can still reach A with the same number of hops.

Only when a pair of nodes is located at the same row or column, there exists

only one shortest path between them. For example, Figure 5.1 shows that if the

111

link between A and B is broken, A can not reach B within one single hop any more.

A has to take the route via C and D to reach B after three hops. In this case, A

removes the context information of B from layer 1 of its filter. Meanwhile, A can

not reach E within two hops. Instead, the shortest path between A and E is via C,

D, and F. The information of E is therefore removed from layer 2 of A. Similarly,

if the link between B and E is broken, A can not reach E within two hops. A has

to take a detour via C, D, and F to reach E. Again, A has to remove the context

information of E from layer 2 of its filter and broadcast the updates.

A

B

EF

CG

H

I

D

Figure 5.1: Connection in a grid-structured network.

Figure 5.2 demonstrates another example where the link between node A and B is

broken. If the ABF has d = 4, 6 nodes in total need to update their filters. Updates

due to the fact that A cannot reach B are represented by solid lines. Updates due to

the fact that B can not reach A, are shown by dashed lines. Different colors denote

the different number of hops: black for the first hop, orange for the second hop,

and green for the third hop. A broken link results in updates for nodes that are in

the same row or column, and that are within the communication range (within d

hops) of the link. In Figure 5.2, when A detects that the link with neighbor B fails,

A removes B’s ABF from its cache and aggregates the remaining direct neighbors’

(node I, F, K’s) ABFs. By doing so, A removes B’s information from its layer 1, C’s

information from its layer 2, and D’s information from its layer 3, because nodes

B, C, and D cannot be reached within the same number of hops anymore. If we

112

assume the context information types offered by node B, C, D are independent of

each other and each node has s different context information types, based on (5.5),

we can derive the update probability of node A as:

Pupdate,A = Pupdate(1, 3) = 1−
3∏
i=1

(Pfp,i)
s .

Nodes F and G, which are on the same side of the disappearing link as A, are

within (d−2) hops away from A, and also need to update their filters (when d = 4).

If we assume each node has s different context information types and the context

information types from every node are independent of that from other nodes, for a

node that is within i hops from node A, based on 5.5, the update probability equals:

Pupdate(i+ 1, d− 1) = 1−
d−1∏
j=i+1

(Pfp,j)
s . (5.6)

The same rule applies to node B and its related neighbors C and D. In case there

would be no false positives, i.e., P s
fp,j = 0, the number of updates is maximal, and

equals to 2 · (d − 1). With the update probability for related layers, the expected

number of updates when one link disappears, N g
update ld, is:

E
[
N g
update ld

]
= 2 ·

d−1∑
i=1

Pupdate(i+ 1, d− 1) = 2 ·
d−1∑
i=1

(
1−

d−1∏
j=i

P s
fp,j

)
. (5.7)

5.2.2 Link Appearance

When two nodes recover a lost link, they consider each other as a new neighbor and

therefore establish the link from scratch. One of the two nodes receives a periodic

keep-alive message from the other one, it follows case 3 defined in Section 3.5,

and replies with an update-request message. The update-request message triggers

the new neighbor to broadcast its ABF. The node integrates the new filter and

broadcasts its update. This update is forwarded to nodes within the advertisement

range (d hops). For instance, the link between node A and B disappeared. After

a while, the link quality improves and A receives a keep-alive message from B. A

does not know B and sends an update request. B adds A as a new neighbor and

113

A B C D F GH E

I J

K L

Figure 5.2: Link disappearance: the link between A and B disappeared with
d = 4.

replies to A by sending its ABF. A receives the filter and adds B as a new neighbor.

A integrates B’s filter into its outgoing filter and broadcasts the update, which is

propagated to nodes d hops away. Figure 5.3 demonstrates the sequence diagram of

the example.

The new link generates paths that are shorter than the existing paths. These

shortest paths are between nodes in the same row or column of the new link, but

on opposite sides. The new link also generates paths between other pairs of nodes,

but these are not shorter than the existing paths because of the highly symmetric

structure of grid networks. As a result, only nodes along the same row or column

need to update their filters. These nodes lie within (d − 2) hops from the two

end nodes of the new link. The update probability of a node can be achieved in

the same way as in the case of link disappearance. If we assume that each node

contains s different context information types which are independent of each other,

the update probability is 1 minus the product of the false positive probabilities in the

corresponding layers, as is described by (5.6). The expected number of updating

packets due to the link appearance, N g
update la, is the sum of update probabilities

over the respective 2 · (d − 1) nodes, plus one extra broadcast in response to the

114

Node A Node B

Uni-cast: update request

Keep-alive

Broadcast: ABF

1st hop
neighbor of B

Broadcast ABF with final

updates

Broadcast ABF with final
updates

1st hop
neighbor of A

2nd hop
neighbor of A

Keep-alive

Broadcast ABF with final

updates

Broadcast ABF with final
updates

Broadcast: ABF

Figure 5.3: Link appearance: the link between A and B appeared.

update-request:

E
[
N g
update la

]
= 1 + 2 ·

d−1∑
i=1

Pupdate(i, d− 1) = 1 + 2 ·
d−1∑
i=1

(
1−

d−1∏
j=i

P s
fp,j

)
. (5.8)

For example, the link between node A and B reappears, as shown in Figure 5.4.

If d = 4, six nodes, including A and B, need to update their ABFs unless all layers

show false positives. The updates triggered from node A are shown by solid lines

and the updates triggered from node B are shown by dashed lines. One of nodes

A or B, broadcasts one extra ABF, depending on which one receives the other’s

keep-alive message first.

115

A B

Figure 5.4: Link appearance.

5.2.3 Node Disappearance

A node may disappear from the network, due to various reasons, such as insufficient

battery supply, non-functional antenna, system crash, and user actions like switching

off the mobile or leaving the network.

In the current Ahoy protocol, the disappearance of a neighbor is noticed if no

keep-alive message from this node has been received for two consecutive keep-alive

periods. The neighbors of this absent node generate new ABFs, and broadcast them,

based on case 5 defined in Section 3.5. Due to the change, all nodes that receive the

updated filter also regenerate a filter and broadcast it. This is repeated by nodes

that are within (d− 1) hops of the disappearing node.

As we addressed in Section 5.2.1, there is always more than one path between

two arbitrary nodes in a grid network. In particular, a node can reach another one

in every two additional hops, starting from the minimum number of hops (shortest

path). For instance, as is shown in Figure 5.1, one of the shortest path between

node A and D is through B, which has a 2 hops distance. A can also reach D within

4 hops through the path A → B → A → B → D, and within 6 hops through the

path A → B → A → B → A → B → D, and so on. Certainly, those detours are

not the most desirable and practical ones. However, this implies that the context

information of node D appears in the ABF of node A, not only in layer 2, but also

116

in layer 4, 6, etc. Therefore, if node D leaves the network, node A needs to clean up

the information from node D in all these layers. The information of the disappearing

node is thus registered in layer 1 of its neighbors, in layer 2 of nodes two hop away,

in layer 3 of both its direct neighbors and neighbors three hops away, in layer 4 of

both neighbors two and four hops away, and so on. When node D disappears, its

information has to be removed from the corresponding layers in all reachable nodes.

In Section 4.1.2, we defined Dg
i as being the i-hop node degree in (4.1) and (4.2),

as:

Dg
i =

{
1, if i = 0,
4 · i, if i > 0.

In total,
∑b(i−1)/2c

j=0 Dg
i−2j number of nodes need to update their layer i. Each time

the information is removed from one layer of a node, it causes one update with the

update probability derived from (5.4). The expected number of updates for a given

query range d, weighted by the update probability for the corresponding layers can

be represented as follows:

E
[
N g
update nd(d)

]
=

d−1∑
i=1

Pupdate(i)

b(i−1)/2c∑
j=0

Dg
i−2j

=
d−1∑
i=1

(1− P s
fp,i)

b(i−1)/2c∑
j=0

Dg
i−2j.

(5.9)

5.2.4 Node Appearance

In this section, we observe the number of updates generated when a new node

appears in an established grid-structured network. Suppose that one node appears

in the square formed by nodes A, B, C, and D, as is shown in Figure 5.5. We refer

to the appearing node as the new node. One basic assumption in this thesis is that

the size of ABFs and hash functions are known by the new nodes. The method to

distribute such information is beyond the scope of this thesis.

When a new node joins an existing network, the steps that were defined in

Section 3.3.2 follow. It first broadcasts an ABF with only local information. The

existing nodes receive the ABF and notice the new neighbor. Those nodes update

their filters based on case 4 defined in Section 3.5. Updates are propagated till d

hops away from the new node. Meanwhile, the new node waits for a short moment

117

1

2 2

2 2

3

3

3 3

A B

CD

Figure 5.5: Node appears in a grid networks.

until it receives all the neighbors’ replies. It aggregates all incoming filters, updates

its own filter, and broadcasts it. This update does not need to be propagated

further by neighboring nodes, because it does not consist new information. This is

due to the fact that local information is duplicated in the lower layers of the first

broadcasted ABF of the new node. Thus, every existing node only updates once to

add information from the new node to the corresponding layers of its filter. The

new node broadcasts its ABF twice, i.e., one original and one aggregated ABF. The

sequence diagram of the updates is depicted in Figure 5.6.

The amount of network traffic depends on the number of neighbors of the new

node. This number is directly related to the location of the new node. In a grid

structure, we can divide the space of one grid into 3 different areas based on the

number of direct neighbors the new node has, as is shown in Figure 5.5. We assume

118

The new node 1st hop
neighbor

Broadcast: ABF

2nd hop
neighbor

Broadcast ABF with updates

Broadcast ABF with updates

1st hop
neighbor

2nd hop
neighbor

Broadcast ABF with updates

Broadcast ABF with updates

Broadcast: ABF

Broadcast ABF with updates

Broadcast ABF with updates

Figure 5.6: Sequence diagram of node appearance.

that the transmission range is equal to the length of one grid. The transmission

ranges are illustrated by dashed circles. Nodes located within Region 1, can reach

all 4 surrounding nodes A, B, C, and D. Nodes located in Region 2 can reach 3

nodes {A,B,D}, {A,B,C}, {B,C,D}, or {A,C,D}. Nodes located in Region 3

can reach only 2 nodes {A,B}, {B,C}, {C,D}, or {A,D}.
The expected amount of extra network traffic due to the new node can be ob-

tained as the sum of the weighted number of updates N g
update na,i that occur when

the new node is appearing in area i (i ∈ {1, 2, 3}). The weights are the probabilities,

pi, that the node appears in the corresponding areas. Thus, we have:

E
[
N g
update na

]
=

3∑
i=1

N g
update na,i × pi. (5.10)

The number of updates per region i, N g
update na,i, includes one ABF from the new

node, which is the response to the update requests. In addition, all the existing

119

nodes within (d − 1) hops of the new node need to update their filters once. The

ith hop neighbors of the new node insert the information into layer i to (d − 1) at

once. Because of the context duplication, the bit positions which are set to 1 in the

upper layers should also be set to 1 in the lower layers. If there is a false positive in

an upper layer, this false positive also occurs in all lower layers. The false positive

probability of adding information into layer i to (d − 1) is thus equal to the false

positive probability of adding information into layer i. The update probability then

equals the update probability of adding information of one node into layer i, as is

described by (5.4).

The new node also needs to have an extra update to insert the information from

its neighbors into its filter. It is almost certain that there will be no false positive in

this case, because many information types (from all nodes within d hops) are added

at the same time. We therefore consider that the new node needs to have an extra

update with an update probability of 1.

In Region 1 in Figure 5.5, the new node has 4 neighbors, like any other node in

the grid. The number of updates can thus be obtained in a similar way as in (5.9).

In Region 2, the new node has 3 neighbors, and in Region 3, the new node has only

2 neighbors. Hence, the number of nodes that can be reached within i hops is not

equal to Dg
i , but to Dg

i − 1 and Dg
i − 2 respectively. With the i-hop node degree

Dg
i and s number of context information types per node, we can thus obtain the

expected number of updates as:

E
[
N g
update na,1

]
= 1 + 1 +

d−1∑
i=1

Dg
i (1− P s

fp,i). (5.11)

E
[
N g
update na,2

]
= 1 + 1 +

d−1∑
i=1

(Dg
i − 1)(1− P s

fp,i). (5.12)

E
[
N g
update na,3

]
= 1 + 1 +

d−1∑
i=1

(Dg
i − 2)(1− P s

fp,i). (5.13)

We assume that the location of the new node has an uniform spatial probability

distribution. Therefore, the probability that the new node appears in a specific

region is equal to that region’s area divided by the total area of one grid. If we

assume that the length of the edge of a grid equals 1, the area of Grid ABCD,

120

SABCD = 1. Thus, as is illustrated in Figure 5.7, Region 1 is Region EFGH in

Figure 5.7; Region 2 includes Region AFE, Region BGF, Region CHG, and Region

DEH; Region 3 is composed of Region ABF, Region BCG, Region DHC, and Region

AED.

1

1

30˚

2sin15˚

π/12-1/4

A B

E

C D

F

G

H

Figure 5.7: Grid ABCD.

According to basic trigonometry, we obtain the area of Region 1, 2, and 3, SA1,

SA2, and SA3 as:

SA1 = (
π

12
− 1

4
)× 4 + (2× sin

π

12
)2 ≈ 0.3151; (5.14)

SA2 =

(
(
π

4
− 1

2
)× 2− SA1

)
× 2 =

π

3
− 8 sin2 π

12
≈ 0.5113; (5.15)

SA3 = 1− SA1 − SA2 = 2− 2π

3
+ 4 sin2 π

12
≈ 0.1736. (5.16)

The probabilities, p1, p2, and p3, that the new node appears in the corresponding

regions, are:

p1 = SA1/SABCD = ((
π

12
− 1

4
)× 4 + (2× sin

π

12
)2)/1 ≈ 0.3151; (5.17)

p2 = SA2/SABCD = (
π

3
− 8 sin2 π

12
)/1 ≈ 0.5113; (5.18)

p3 = SA3/SABCD = (2− 2π

3
+ 4 sin2 π

12
)/1 ≈ 0.1736. (5.19)

121

5.2.5 One Moving Node

The grid as a network model is a fixed structure. It does not allow nodes to move

randomly through the network. However, we can consider a scenario that one addi-

tional node moves in the grid. The extra network traffic generated by the moving

node depends on the path and the speed of the mobile node. We start the analysis

with a simple scenario where the path of the moving node is a straight line, espe-

cially, it crosses an existing node A in the network. Due to the symmetric structure

of a grid network, the paths yield identical results, when the new node moves from

the same position as an existing node A under an angle of α, π/2−α, π/2+α, π−α,

π+α, 3π/2−α, 3π/2 +α, or 2π−α with the horizontal, with 0 ≤ α ≤ π/4. This is

illustrated in Figure 5.8. In this section, we first observe two extreme traces, with

α = 0◦ and α = 45◦. When α = 0◦, the node crosses the network along the grids.

When α = 45◦, the node crosses the network diagonally. We finish this section with

traces in arbitrary directions. To simplify the problem, we assume that the node

moves slowly enough to finish the updating process with the neighboring nodes.

A

α
π

−
2

α

π
+

2

α

απ −2

απ −

απ +

α
π

−
2

3

α

π
+

2
3

x

y

Figure 5.8: The mobile node move across node A.

122

Transverse angle: α = 0◦

In this scenario, a node traverses horizontally through the network. We assume that

the distance between direct neighbors is exactly equal to the transmission range of

the nodes, which is illustrated in Figure 5.9. Suppose that a mobile node moves

along the horizontal edges of the grids. Most of the time, it is in the transmission

range of two nodes. For example, the mobile node M is in the transmission range of

node D and E, until it passes node E. After passing E, it is out of range of D, but

within the range of C, as is shown in Figure 5.9. A new direct connection with C is

established. Meanwhile, the direct connection with node D is lost. At the moment

that the mobile node M is at the same location as E, M is in the transmission ranges

of 5 nodes, including A, B, C, D, and E. This location is the only location where the

transmission ranges (shown by circles) of four nodes, i.e., A, B, C, and D, intersect.

Because the mobile node moves, the time spent at location E is infinitely small. The

probability that the mobile node receives a packet from the nodes A and B within

this infinitely small time period is infinitely close to zero, vise versa. Therefore, we

consider that the mobile node and the nodes A and B do not recognize each other

as a new neighbor within this time period.

M
C

A

B

D
E

Figure 5.9: Mobile node moving along the edges of a grid.

The new connection with C generates a new shortest path between the mobile

node M and node C. It also generates new shortest paths between node M and all

123

the nodes d hops away that are in the same “column” of C or in the columns on

the right side of C. To add the related information for those new shortest paths, M

and nodes (d − 1) hops away from M need to update their filters, based on case

3 defined in Section 3.5. These nodes form an equilateral triangle with C in the

middle of the long side, and with the right angle at the node (d − 1) hops away

from M in the direction in which M is moving. Similarly, new shortest paths are

established on the other side, because M lost the connection with D. These nodes

are in a similar triangle, in which D is in the middle of the long side, and in which

the right angle points to the opposite direction to which M is moving. For d = 4, in

Figure 5.10 the orange nodes represent the nodes that need to be updated due to

the new connection with C (Figure 5.10(a)) and due to the lost connection with D

(Figure 5.10(b)). Those nodes need to update once to remove information of M in

their corresponding layer, based on case 5 defined in Section 3.5.

As a consequence, the mobile node M updates its filter by changing the new

shortest path information into the related layers. During the update, M aggregates

the ABFs from its new direct neighbors. In doing so, it also modifies the shortest

paths to other nodes, which pass through the new neighbors and the lost neighbors.

The update of M can therefore be done at once. Note that again we give a mild

assumption that the update probability is equal to 1, because many context informa-

tion types (from several nodes) are added or removed at once. Simultaneously, any

node which can reach M in i hops via a new connection or cannot reach M anymore

in i hops due to a broken connection also need to respectively add information to or

remove information from its layer i. According to Figure 5.10, in which d = 4, there

are two times (2i − 1) number of nodes in the ith hop. The number of updating

nodes in the ith hop is also equal to Dg
i − 2, because for a grid structure Dg

i = 4i.

The expected number of updates, weighted by the update probability (5.4), plus

one reply to the update request, can be obtained as:

E
[
N g
update hori

]
= 1 + 1 +

d−1∑
i=1

(Dg
i − 2)(1− P s

fp,i). (5.20)

124

M C

A

B

D

(a)

M

A

C

B

D

(b)

Figure 5.10: Horizontal move: (a) the case when new shortest paths are estab-
lished. (b) the case when the shortest paths are eliminated. In
both figures, orange nodes are the ones that need to update their
filters. The hollow node is the mobile node M.

Transverse angle: α = 45◦

In this case, the trace of the mobile node is exactly along the diagonal of a grid. For

example, as is shown in Figure 5.11, the mobile node is moving along the diagonal

AC of Grid ABCD.

Based on the different sets of direct neighbors, the trace in one grid can be

divided into 3 sections:

• Section 1: The mobile node can not reach node C directly. The set of its direct

neighbors is {A,B,D}.

• Section 2: The mobile node can reach all 4 nodes directly. The set of its direct

neighbors is {A,B,C,D}.

• Section 3: The mobile node can not reach node A any more. The set of its

direct neighbors is {B,C,D}.

Updates are triggered by changes in ABFs, which occur when a node is added

or removed from the original ABFs, based on case 3 and 5 defined in Section 3.5.

In this scenario, the changes occur when the mobile node M (the purple node in

125

2

1

3

A

B

C

D

Figure 5.11: 45◦ across the grid (diagonal).

Figure 5.12) travels from one section to another. When the mobile node M moves

from Section 1 to 2, node C is the new neighbor of the mobile node. As a result, new

shortest paths are generated from the mobile node and node C, and nodes beyond

C. Those nodes need to update their own filters due to the new shortest path to the

mobile node. If we set the depth of the filter d at 4, the orange nodes in Figure 5.12

are the nodes which need to update their Bloom filters.

Similarly, if the mobile node moves from Section 2 to 3, it loses the direct connec-

tion with node A. As a result, shortest paths between the mobile node and node A,

and nodes beyond A are changed. Since nodes only remove the information related

to the shortest path, every related node needs to update only once. As is shown in

Figure 5.13, the orange nodes are the nodes that need to update Bloom filters when

d equals 4.

From this analysis, we can deduce that updates only happen to the nodes of

which shortest path to the mobile node have been changed. Due to the special

network structure, the updating area is a right-angled triangle. The right angle is at

the location of the node with which a new connection is established or with which

a connection is broken. The right angle of this triangle is faced towards the grid

in which the mobile node is moving. The number of nodes located in the catheti

equals to (d− 1). In this thesis, we name this updating area an “update triangle”.

126

M

Figure 5.12: Updates for a node moving from area 1 to 2.

The nodes that are located in the “update triangle” need to update their filter once

to modify the shortest path information. The number of i-hop neighbors in the

“update triangle” is equal to i. The ith hop nodes update their layer i by adding (in

case of a new connection) or removing (in case of a broken connection) information

types of the mobile node. This is done with the update probability, described by

(5.4). Again, we assume the the update probability is 1 for the update of the mobile

node. As explained earlier, all nodes, including the mobile node, only need to

update once. As we discussed in Section 5.2.2, the updates are always triggered by

an update request when a new connection is established. This generates one extra

broadcast. For a broken connection, no extra traffic is needed to trigger the updates.

The expected number of updates for a diagonally trace across a grid, N g
update diag can

thus be achieved as:

E
[
N g
update diag

]
= 2 ·

(
1 +

d∑
i=1

i · Pupdate(i)

)
+ 1

= 2 ·

(
1 +

d∑
i=1

i · (1− P s
fp,i)

)
+ 1.

(5.21)

127

M

Figure 5.13: Updates for node moving from area 2 to 3.

Movement in arbitrary directions

So far, we have analyzed how many expected updates are needed when a node

moves along edges or diagonally across a grid. Extra traffic is generated due to

changes in connections between the mobile node and neighboring nodes. As a result,

shortest paths between the mobile node and other nodes are generated or eliminated.

Therefore, those nodes need to update their attenuated Bloom filters. Interestingly,

we can define so-called “update triangles” that contain the nodes which have to

update their filters. These triangles can be defined such that they have the following

characteristics:

1. Given that d is the depth of the ABF, an “update triangle” is a right-angle

triangle with (d− 1) number of nodes in both catheti.

2. Both catheti are parallel to grid edges (horizontal and vertical).

3. The right angle of the triangle is at the node with which a connection is

established or broken.

4. The right angle of the triangle is faced towards the grid in which the mobile

node is moving.

128

When a connection is established or broken, the mobile node and nodes in the

“update triangle” need to update once. The nodes in the “update triangle” which

are i hops away from the mobile node, update their layer i by respectively adding

or removing the information types from the mobile node. This is done with update

probability, described by (5.4). We assume that the update probability of the mobile

node is 1 in this case, because it has to modify many context information types at

once. No advertisement loops are created during updating. When the mobile node

aggregates ABFs from its new neighbors in its own ABF, updates for all other

nodes that can be reached via the new neighbors, are automatically done. When

a connection is established, the changes are triggered by an update request. As

a result, there is one extra broadcast. When a connection is broken, there is no

such broadcast needed, because the updates are simply triggered by not receiving

information (advertisements or keep-alive messages) from the neighbor anymore.

From the updating process, described above, we can now generalize the expected

number of extra packets when a new connection is established, as:

E
[
N g
update add

]
= 1 +

d∑
i=1

i · Pupdate(i) + 1, (5.22)

and the expected number of extra packets when a connection is broken, as:

E
[
N g
update remove

]
= 1 +

d∑
i=1

i · Pupdate(i). (5.23)

The horizontal transverse along edges is an extreme case here. The corresponding

update area consists of two “update triangles” that have one catheti in common, as

is illustrated in Figure 5.10. The reason for this is that the mobile node moves on

the edge of two grids, and hence generates two update triangles when it establishes

a new connection or looses one. When the mobile node moves along the edge of

the grids, there are always two “update triangles” that share one cathetus, which is

aligned with the edge along which the node is moving.

The location of the mobile node in the grid determines which nodes are its

direct neighbors. Based on this, we can divide a grid into 9 sections as is shown in

Figure 5.14. For a grid formed by 4 nodes A, B, C, and D, Table 5.1 lists the direct

neighbors of the mobile node given its location in the grid.

129

E

A

B

C

D

FH

G

Figure 5.14: Grid division.

When the mobile node moves from one region to the other, connection(s) with

neighboring node(s) are established or broken. The nodes in the corresponding

update triangle(s) need to update their filters accordingly. This principle is always

valid, no matter in which direction the mobile node is moving.

For example, in Figure 5.15 the mobile node moves along a trace crossing the

following regions in succession: RAHD → RAEH → REFGH → RFCG → RDGC . The

trace of the mobile node is represented by the dashed line. When the mobile node

moves from RAHD to RAEH and from RFCG to RDGC , it establishes and breaks

the connection with node B, respectively. This is shown by red solid arrows in

Figure 5.15(a). The mobile node first needs to add and then remove the information

type from node B from its filter. Meanwhile, nodes for which the shortest path to

the mobile node have changed, need to update their filters as well. Those nodes are

located in the “update triangle” of B, which right angle is located at node B.

When the mobile node moves from RAEH to REFGH , it establishes a link with

node C. This is illustrated in Figure 5.15(b). This triggers the mobile node to update

its filters by adding information from the new neighbor. Meanwhile the nodes from

the “update triangle” of C, have to update their filters as well (shown in blue in

Figure 5.15(b)). When the node moves from REFGH to RFCG, the direct connection

with node A is broken. Node M and the nodes located in the “update triangle” of A

(shown in red in Figure 5.15(b)), update their filters accordingly. Based on results

130

Table 5.1: Reachability of a mobile node that is located in specific regions of
Grid ABCD).

Region Direct Neighbors

RAEH A, B, D
RAHD A, D
REFGH A, B, C, D
RHGD A, C
RFCG B, C, D
RDGC C, D
RAEB A, B
REFB A, B, C
RCBF B, C

from Scenario “transverse moment: α = 45◦”, we can derive the number of updates.

In this case, there are in total two new connections that have been established (to

B and C) and two that have been broken (to A and B). Based on (5.22) and (5.23),

we thus can derive the total expected number of updates as:

E
[
N g
update example

]
= 2 ·N g

update add + 2 ·N g
update remove

= 4 · (1 +
d∑
i=1

i · Pupdate(i, i)) + 2

= 4 · (1 +
d∑
i=1

i · (1− P s
fp,i)) + 2.

(5.24)

5.2.6 Summary

The analytical studies in grid-structured networks provide us an overview of how

updates are triggered and propagated in various situations: disappearance and ap-

pearance of both links and nodes, as well as in case of a node moving through the

grid. We can derive the following conclusions from our study in grid-structured

networks:

• Updates happen whenever a shortest path has been established or has disap-

peared.

131

A B

C
 D

RAHB->RAEH
RFCG ->RDGC

H

G

E

F

O

M

(a)

A B

C D

REFGH->RFCG

RAEH->REFGH

H

G

E

F

M

O

(b)

Figure 5.15: An example of a mobile node crossing a grid.

• When a link or a node disappears, corresponding nodes update their ABFs

based on case 5 defined in Section 3.5. When a link appears, case 3 defined

in that section has been followed. When a node appears, corresponding nodes

update based on case 4 defined in that section, and the new appearing node

follows steps defined in Section 3.3.2.

• When a link appears or disappears, the existing shortest paths containing the

changed link need to be updated. Due to the highly symmetric structure

of grid networks, updating nodes are aligned to the changed link. Only one

update is required for each node.

• When a node appears or disappears, nodes within d hops range of the ap-

pearing/disappearing nodes need to update accordingly. To remove a context

information type in the network, nodes need to update their ABFs several

times to remove information layer by layer. To add a context information

type in the network, related nodes need to update only once, due to context

duplication.

• When a node moves in the network, we discover that the updating nodes are

located in an “update triangle”, in which the node at the right angle is the

node with which the mobile node establishes or looses a connection. No matter

how nodes move in grid-structured networks, when a connection is established

132

or broken, the mobile node and the nodes in the related “update triangle”

update only once to modify their ABFs accordingly.

5.3 Circular Structure

In this section, we extend our dynamic connectivity study to circular-structured

networks. We investigate four different cases: a node disappearing, appearing, losing

some packets, and traveling through the network. For the first three cases, we use an

analytical approach to quantify the extra traffic load which is caused by updates, and

we validate the results by simulations. For the mobility scenario, we analyze the case

that one node travels in a straight line through the network. We do simulations for

different speeds and different network densities. In particular instances, we could

also derive the results analytically. For these cases, we compare the simulation

results with the analytical ones.

We do not consider the scenario of link disappearance and appearance. In that

scenario only pairs of nodes are updated, of which shortest paths pass through the

modified link. For some topologies, one link could provide shortest paths between

several nodes. In a grid network, for example, there exist unique shortest paths

between pairs of nodes that are aligned with the modified link. Yet, the number of

nodes affected is small compared to that in a scenario where a node is appearing,

disappearing or moving through the network. Another example in which a link is

quite important is when it connects two clusters of nodes. However, we do not

consider such extreme topologies. We assume that nodes are randomly distributed.

In that case, multiple shortest paths often exist between two nodes. When the

density is high, only nodes that are directly connected by the modified link need to

be updated. Therefore, in general link appearance or disappearance will only lead

to a marginal increase in traffic.

5.3.1 Simulation Setup

The circular structured networks are modeled in the discrete event simulator OP-

NET Modeler version 11.5 [63]. Each node has a 300 meters communication range

r. According to (4.4), if the study area is 1700m×1700m, we need at least 61 nodes

133

to generate 1-connected graphs with 90% (confidence) probability. To include both

non-connected and fully connected graphs, we observe the scenarios with 25, 61,

100, 125, 150 nodes, randomly distributed in the study area. The network densities,

the number of nodes per m2, are 0.87× 10−5, 2.11× 10−5, 3.46× 10−5, 4.33× 10−5,

and 5.19 × 10−5, respectively. We consider the 25 nodes scenario as a low density

network, and the 150 nodes scenario as a high-density network. The node that

disappears, appears, or is temporarily unreachable, is located in the center of the

area to avoid border effects. For each parameter setting, 30 independent runs are

performed for estimating the 90% confidence interval.

Some basic ABF parameters are set as follows: number of hash functions per

service, b = 10; ABF width, w = 1024bits; ABF depth, d = 3; number of context

sources advertised per node, s = 1.

5.3.2 Node Disappearance

We start the analysis with the case of one node disappearing from the network.

Similarly as in grid-structured networks, when a link or a node disappears, corre-

sponding nodes update their ABFs based on case 5 defined in Section 3.5. We

first observe the actions of one node when one of its direct neighbors disappears

and then study the total number of updates due to the disappearance of that node.

We assume that some node A disappears at the moment the network has reached

a stable state, i.e., all ABFs are up-to-date at that moment. Node B is one of the

neighbors of node A. When node A and B are direct neighbors, the communication

range of nodes A and B intersect with each other, as is shown in Figure 5.16. Nodes

that are located within the intersection area are direct neighbors of nodes A and

B. All these nodes, including B, can reach A in one hop, but also in two hops, and

probably in even more hops. Information of A is therefore not only in layer 1 of B,

but also in its lower layers. To reduce extra traffic due to the advertisement loop,

context information types are duplicated in the lower layers anyway.

At the moment that A disappears, direct neighbors, such as B, notice that the

connection with A is broken when no keep-alive message has been received for two

consecutive keep-alive periods. As a result, they remove the information from A from

their layer 1. However, not all direct neighbors will act simultaneously, because

updates are unsynchronized to avoid collisions. Suppose that B has updated its

134

information in layer 1. It may still think that it can reach the information of A

through nodes in the intersection area that have not yet updated their layer 1. In

fact, this is exactly what happens when only the link between A and B is broken

(but A has not disappeared). Only when all the nodes in the intersection area have

updated their layer 1, node B can update its layer 2.

Suppose now that B is the last node in the intersection area that updates its

layer 1. At that time, B thinks that it can still reach A in at least three hops,

but not within two hops. In that case, B can update its layer 1 and 2 at once. In

general, some other nodes that are not in the intersection area of A and B may

also update two layers at once. The number of such nodes depends on the way the

updates propagate. If the update order is random, some nodes get isolated, i.e.,

they are updated after all their neighbors in the intersection area with A have been

updated. If the updates propagate in one direction, for example clockwise, in the

most extreme case, only the last node in the sequence gets isolated and updates two

layers at the same time.

Similarly, after all 2-hop neighbors of A have removed the information of A from

layer 1 and 2, nodes that could reach A in three hops, will realize that A is not

available within three hops anymore, and they will clean layer 3. Again, at least one

node will clean up two layers, i.e., layer 3 and 4, at once. This process is continued

until nodes have cleaned up the information from A in all corresponding layers.

A B

Figure 5.16: Node A and B are direct neighbor of each other.

135

From this, we can estimate the number of updates that are generated when one

node disappears. Since a high density network which is k−connnected (k > 1) is

assumed here, all ith hop neighbors of the disappearing node can also reach it in any

number of hops which is larger than i. This implies that the total number of nodes

that can reach the disappearing node in exactly i hops is
∑i

j=1Dj. Nodes, which

can reach the disappearing node in one hop, first clean up their layer 1. In total,

there are D1 of such nodes. Then all nodes, which can reach the disappearing node

in 2 hops, clean up their layer 2. In total, there are (D1 + D2) of such nodes. This

process continues till layer (d− 1) after which all neighbors within at most (d− 1)

hops have cleaned up their filters. However, as we have discussed in Section 4.1.2, we

can only obtain an expected value of the i-hop node degree for circular-structured

network, E[Dc
i], as is shown in (4.13):

lim
n→∞

E[Dc
i] =

1, i = 0,

n

(
π(ir)2 − π

(
(i− 1)r

)2)
= (2i− 1)nπr2, i > 0.

Further, except for the one hop neighbors, not all i hop neighbors (2 ≤ i ≤ d − 1)

need to update their layer i. As we addressed above, there is at least one node that

has cleaned layer i simultaneously with layer (i − 1). Here, we achieve an upper

bound, because we consider there is only one such node for each hop between 2 and

(d − 1). Therefore, there are in total (
∑i

j=1E[Dc
j] − 1) number of i hop neighbors

(2 ≤ i ≤ d− 1), which may update layer i. Every i hop neighbor cleans layer i with

an update probability of (1− (Pfp,i)
s). We can thus derive the expected number of

clean-up updates for one node disappearing, E[N c
updates nd], to be smaller or equal to

the upper bound:

E[N c
updates nd] ≤ E[Dc

1] ·
(

1− (Pfp,1)
s

)
+

d−1∑
i=2

((
i∑

j=1

E[Dc
j]− 1

)
· (1− (Pfp,i)

s)

)
.

(5.25)

We verify the results of this approximation with simulations. Table 5.2 presents

the results for the 5 different network densities. In the table, we also show the relative

error, which is defined as the relative difference between the analytical result Va and

136

the mean of the simulations V̄s:

Error =
Va − V̄s
V̄s

× 100%. (5.26)

Table 5.2: Results on node disappearance in circular-structured networks.

Density
(×10−5 node

m2)
Upper
bound

Mean
Simulation

Results
Confidence Interval Error (%)

0.87 11.23 5.63 (4.54, 6.72) 99.47
2.11 28.84 20.03 (18.08, 21.98) 43.98
3.46 47.92 39.40 (37.30, 41.50) 21.62
4.33 60.14 51.70 (48.27, 55.12) 16.32
5.19 72.36 66.37 (62.54, 70.20) 9.03

Table 5.2 shows that the relative error decreases with density. It drops from

99.47% to 9.03% when the network density increases from 0.87 × 10−5 node/m2

to 5.19 × 10−5 node/m2. This result suggests that the difference between upper

bound and simulation is due to our assumption of a very high-density network.

The estimation of the i-hop node degree from (4.13) is slightly overestimated by

the analytical model. In the simulations, fewer nodes are involved in updating, and

therefore less traffic is generated. Also, more nodes in the ith hop can clean up more

than one layer at once, whenever all of its direct neighbors have already removed

the related information from layer i of their filters. This results in fewer update

packets than is estimated by the upper bound. However, the fraction of nodes that

can update two layers at once is small for high densities. We therefore conclude that

the upper bound is a relatively good estimate for high density networks.

In Figure 5.17, we further show the results. The analytical results are shown

by the solid line, while the simulation results are shown by the dashed line. The

error bars represent the confidence intervals. The figure nicely illustrates how much

the upper bound overestimates the extra traffic that is generated when a node

disappears. We also obtain the number of update packets for the grid-structured

networks from (5.9). We estimate the network density in [52] as 0.7 × 10−5. This

yields 12.0 updates transmitted for each disappearing node, which is plotted as a

137

star in Figure 5.17. This number is slightly higher than the one for a circular network

with the same density. This difference can be explained by the difference in i-hop

node degree for both network structures.

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
0

10

20

30

40

50

60

70

80

Node density (×10 -5node/m2)

nu
m

be
r o

f u
pd

at
e

pa
ck

et
s

Upperbound
Simulation results
Grid structured results

Figure 5.17: Number of updates generated when a node disappears.

5.3.3 Node Appearance

In this section, we consider the scenario that one new node appears in the network.

Similar as in grid-structured networks, a new node follows the steps described in

Section 3.3.2, and other corresponding nodes follow case 4 defined in Section 3.5

for updates. The new node first broadcasts an ABF with only local information.

The direct neighbors receive the broadcast and update their filters. All nodes till

(d−1) hops away from the new node update their ABFs accordingly. The new node

waits for a short moment and aggregate ABFs from all its neighbors and generate

a new updated outgoing ABF. The sequence diagram is shown by Figure 5.6.

We assume a high density network, which implies that the appearance of the

new node does not generate shorter paths between existing nodes. Therefore, for

any node up to (d − 1) hops away from the new node, only the appearance of the

new node is added into the existing filters. Further, since the local information of

the new node is duplicated to every layer of its ABF, the neighbors can update

138

their filters at once rather than adding the information layer by layer. After the

initial broadcast (reply for the keep-alive message), every node, including the new

one, therefore only updates once. Similar as in Section 5.2.4, the update probability

equals to the update probability of adding s context information types into layer

i (see (5.4)). The expected number of updates can thus be quantified as the total

number of nodes within (d−1) hops, weighted by the update probabilities, plus two

broadcasts of the appearing node:

E[N c
updates na] =

d−1∑
i=1

E[Dc
i] · (1− P s

fp,i) + 1 + 1. (5.27)

We compare the analytical result with the simulation. The results are shown in

Figure 5.18 and Table 5.3. The figure and table demonstrate that the analytical and

simulation results compare relatively well. Also in this case, the error between ana-

lytical and simulation results decreases with density, i.e., from 38.59% to 1.73% when

the network density increases from 0.87 × 10−5 node/m2 to 5.19 × 10−5 node/m2.

In high density scenarios like 4.33 × 10−5 node
m2 and 5.19 × 10−5 node

m2 , the analytical

results fall within the confidence interval of the simulations. There are two opposite

effects that influence the accuracy of the analytical estimation. Both of them follow

from our assumption of very high densities. First, the ith hop node degree is overes-

timated in the analytical model, especially for low densities. The analytical model

therefore predicts too much traffic. However, the appearance of a new node will also

not yield new shortest paths in the analytical model. In reality, new shortest paths

will be generated, especially in low density environments. As a result, quite a few

nodes need to update more than once, because new i-hop neighbors are discovered.

Figure 5.18 shows that the latter effect does not completely compensate for the for-

mer effect. Of course, when the network density is high, the biases in the analytical

model become less severe.

The corresponding results of the cost for the grid structure, as obtained from

Formula 5.10, is plotted as a star in Figure 5.18. Again, the node density is 0.7×10−5.

The result is very comparable to the analytical result for the circular structured

network.

139

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

Node density (×10 -5node/m2)

nu
m

be
r o

f u
pd

at
e

pa
ck

et
s

Analytical approximation
Simulation results
Grid structured results

Figure 5.18: Number of updates generated when a node appears.

5.3.4 Packet Loss

In this section, we study the situation where some packets of a node get lost, e.g., due

to unfavorable propagation conditions in all directions. Note that this is different

from a broken link, because in this case, not one, but all neighbors cannot receive

the packets anymore. If at least two consecutive keep-alive messages from a node

are lost, the neighbors of the node consider the node to have disappeared. They

start cleaning up their ABFs as we described in Section 5.3.2. After some time,

the transmission quality of the node improves, and keep-alive messages are received

again. The neighbors think that a new node has appeared in the network. The

actions, described in case 3 in Section 3.5, are taken. The sequence diagram is

shown in Figure 5.19.

Here, we assume that the packet loss only occurs in one direction, i.e., we assume

that the node can still receive packets from its neighbors. This is slightly different

than the scenario in Section 5.3.3. In Section 5.3.3, the new node does not have

any knowledge about the network, while in this case the (appearing) node keeps

receiving updated information from the neighbors. Therefore, the appearing node

does not need to update its filter to insert information types from its neighbors.

140

Table 5.3: Results for node appearance in circular-structured networks.

Density
(×10−5 node

m2)
Analytical

Results

Mean
Simulation

Results
Confidence Interval Error (%)

0.87 11.78 8.50 (6.81, 10.20) 38.59
2.11 25.87 22.47 (20.31, 24.62) 15.13
3.46 41.13 38.23 (36.26, 40.20) 7.59
4.33 50.92 50.23 (46.91, 53.56) 1.37
5.19 60.70 59.67 (55.05, 64.29) 1.73

One update less is thus generated than in Section 5.3.3. The number of updates

generated in this scenario, N c
packet loss, can be obtained by:

N c
packet loss = N c

updates nd +N c
updates na − 1. (5.28)

From (5.25), (5.27), and (5.28), we can obtain the estimation of the number

updates due to packet loss and compare it with simulations. The results are shown

in Figure 5.20 and Table 5.4. The keep-alive period, i.e., the time between two con-

secutive keep-alive messages is distributed uniformly in the interval [15, 17] seconds.

The packet loss period is the period in which no packets can be received. We set

this period to be 45 sec, which guarantees that at least two consecutive keep-alive

messages are lost. As expected, the simulation shows a slightly lower amount of

updates than the analytical estimations. As mentioned in Section 5.3.2 and Sec-

tion 5.3.3, the assumption of having a very high density network implies that the

appearing or disappearing node has a maximum ith hop node degree and that no

new shorter paths are generated between the appearing node and the other nodes.

For low density networks, this is not true anymore. The accuracy of our analytical

model therefore decreases towards low densities. The error between analytical and

simulation results is 63.04% for a low density network with 0.87 × 10−5 node/m2,

but it is only 3.90% for a high density network with 5.19× 10−5 node/m2.

We also study the effect of different packet loss periods. We use the 61-node

scenario (density of 2.11× 10−5 node/m2). We vary the packet loss period from 18

sec to 100 sec. The results are shown in Figure 5.21. For a packet loss period smaller

than 15-20 sec, there is at most one packet lost, which implies that no updates are

141

The new
neighbor

1st hop
neighbor

Uni-cast: update request

Keep-alive

Broadcast: ABF

2nd hop
neighbor

Broadcast ABF with updates

Broadcast ABF with updates

1st hop
neighbor

2nd hop
neighbor

Keep-alive

Broadcast ABF with updates

Broadcast ABF with updates

Broadcast: ABF

Uni-cast: update request

Broadcast ABF with updates

Broadcast ABF with updates

Figure 5.19: Sequence diagram when a node receives a keep-alive message from
an unknown neighbor.

needed. For a packet loss period between 20 and 30 sec, two consecutive keep

alive packets may have gotten lost. In this time window, the number of updates

will therefore increase rapidly until it almost reaches its maximum at 30 seconds.

For packets loss periods beyond 30 seconds, the number of updates only slightly

increases, probably due to the fact that not all updates are done before the node

reappears. If the packet loss period is larger than 45 sec, the number of extra

updates is constant, because the nodes have enough time to complete the updates

for disappearance within this time period.

142

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
0

20

40

60

80

100

120

140

Node density (×10 -5node/m2)

nu
m

be
r o

f u
pd

at
e

pa
ck

et
s

Analytical approximation
Simulation results

Figure 5.20: Number of updates generated due to packet loss.

5.3.5 One Moving Node

For grid structured networks, we have already shown that calculations for a moving

node are rather complex, even though grid-structured networks have a highly sym-

metric and regular network topology. The network topologies for circular-structured

networks are random and unpredictable, which complicate the calculations of the

number of updates even more. In this section, we therefore only use simulation to

evaluate the amount of extra traffic that is generated by a moving node. The node

is moving from one spot to another in a straight line with fixed speed. The start

and end point of the journey are far enough apart so that they do not share any

node within d hops. This guarantees that all nodes in the query range (d hops) of

the start and end position have to update their filters. This offers us the chance to

compare the simulation results with analytical results in which a node disappears in

one location, and reappears in a different location. This is an extreme case in the

sense that the mobile node is moving extremely fast, so that the other nodes along

the trajectory of the moving node will not have time to update their filters. The

simulation has been done in a two-dimensional area of 4200× 1800m2. We assume

that d is equal to 3. The mobile node with a 300 meters communication range is

143

Table 5.4: Results for packet loss in circular-structured networks.

Density
(×10−5 node

m2)

Analytical
Estima-

tions

Mean
Simulation

Results
Confidence Interval Error (%)

0.87 22.01 13.50 (10.66, 16.34) 63.04
2.11 53.71 48.23 (44.69, 51.77) 11.36
3.46 88.05 80.40 (74.68, 86.12) 9.51
4.33 110.06 107.20 (101.42, 112.98) 2.67
5.19 132.06 127.10 (122.45, 131.75) 3.90

set to move 2400 meters from point (900m, 900m) to (3300m, 900m). In this way,

all nodes in the region can reach the mobile node within d hops and border effects

are minimized.

The additional update traffic is highly related to the speed of the node and the

network density given a fixed keep-alive period. To capture these relationships, we

use two different network densities 8.07×10−6 (61 nodes in the experiment area) and

1.98× 10−5node/m2 (150 nodes in the experiment area), and we let the speed vary

from 0.1m/s to 20m/s. These speeds correspond to moving objects in daily life, i.e.,

1m/s is the average speed of a walking adult; 5m/s is the average speed of a bicycle;

20m/s can be considered to be representative for the speed of a car. The results are

shown in Figure 5.22. The figure shows that the traffic load decreases with speed.

This result is not unexpected. When a node moves faster, the probability increases

that its temporary neighbors do not have enough time to update their filters before

the moving node has disappeared again. As can be expected, the extra network

traffic increases (almost proportionally) with density, because more nodes need to

update their filters when the density increases.

We also simulate the extreme case in which we use a very high speed of 24000

m/s. We assume that at this speed, nodes along the trajectory of the moving node

will not have time to notice any change. This scenario can be considered as the

equivalent of a node disappearing from one position and reappearing at another at

the same time. The effect of the disappearance of a node is discussed in Section 5.3.2.

However, the reappearance is different from that discussed in Section 5.3.3. In

144

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Packet loss period(s)

nu
m

be
r o

f u
pd

at
e

pa
ck

et
s

Figure 5.21: Number of updates generated due to various packet loss periods.

Section 5.3.3, we assumed that the node appears in a new environment with only

its local information stored in the ABF. In this scenario, the node appears in a

new environment with its ABF filled with information from its neighbors in the

previous position. Therefore, the updates will take place twice. In the first round,

the updates will spread the information that was still present in the ABF of the

mobile node. After two continuous keep-alive periods, the mobile node notices the

loss of the connection to its previous neighbors. It will clean up those neighbors

from its filter, and the second round of updates will take place. We can generalize

the total number of updates due to a fast moving node, N c
updates move, as:

N c
updates move = N c

updates nd + 2 ·N c
updates na. (5.29)

From (5.25), (5.27), and (5.29), we can obtain the expected value of the number of

updates when one node moves and compare it with the simulation results for different

network densities: 8.07 × 10−6, 1.98 × 10−5, 2.38 × 10−5, 3.17 × 10−5, and 3.97 ×
10−5nodes/m2. The results are shown in Figure 5.23. Again, the analytical expected

number of updates overestimates the amount of extra traffic when the network

density is low, because it overestimates the connectivity and thus the number of

nodes that needs to be updated. For higher network densities, our analytical model

145

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

450

speed (m/s)

nu
m

be
r o

f u
pd

at
e

pa
ck

et
s

150 nodes

61 nodes

simulation results for 150 nodes
simulation results for 61 nodes

Figure 5.22: Number of updates generated when one node moving in different
speed in various network densities.

becomes more accurate. In the high density scenarios with 2.38× 10−5, 3.17× 10−5,

and 3.97× 10−5node/m2, the analytical results are within the confidence interval of

the simulation results.

5.3.6 Summary

Updates due to dynamic connectivity happen whenever a shortest path between

a pair of nodes has been modified. We have obtained the expected number of

additional broadcasts in analytical expressions for the circular structure, with the

assumption of high density networks. Simulations have been done for comparison.

From this, we conclude that the analytical expressions are indeed quite accurate

for high-density networks. This fits our hypothesis. For low densities, the analyt-

ical model overestimates the number of updates, because, among others, it then

overestimates the i-hop node degree.

Since the proposed protocol automatically duplicates its own context sources to

all lower layers of the ABF, the appearance of a new node can be handled in a single

pass of advertisements. No advertisements have to go up and down to propagate

146

0,5 1 1,5 2 2,5 3 3,5 4
0

20

40

60

80

100

120

140

160

180

network density (×10 -5nodes/m2)

nu
m

be
r o

f u
pd

at
e

pa
ck

et
s

Analytical approximation
Simulation results

Figure 5.23: Number of updates generated when one node moves with the ex-
tremely high speed of 24000 m/s in various network densities. In
this case, no update is generated during the move. It is equivalent
of the case that a node disappears from one position and reappears
at another that no node knows it.

the availability of indirect paths to the new node into the lower layers of the ABFs

of the other nodes. However, in the case of removal of a node, multiple passes

are needed to remove its representation completely from all layers of the ABFs.

Removal of context sources has to be done layer by layer, as there is no equivalent

of duplication in this case. Therefore, removing a node generates more traffic than

adding a node.

We studied a simple mobile case of one node moving in a straight line in a

circular structured network. For increasing speed of the moving node, less traffic

is generated in total. However, we believe that in real world situations, network

density has a larger effect on the number of generated updates in total than the

speed of the mobile node. In the extreme case where a node moves at very high

speed, the analytical model fits the simulation results quite well for high density

networks.

From this analysis, we can anticipate the network behavior in terms of updates

147

when nodes are moving in the network, and when densities vary. There are more

updates required in high density networks, whereas there are fewer updates gener-

ated when nodes move faster. Of course, the keep-alive period is also an important

aspect in this respect. The shorter the keep-alive period is, the faster nodes notice

the change in the network. As a results, more updates are generated. On the other

hand, large keep-alive periods generate fewer updates, but the information is not up

to date. When queries are sent out often, there will then be a slightly higher chance

of false positives and false negatives. The choice of the keep-alive period depends

on the network situation and the requirements. The network administrator should

choose which is more important: the amount of traffic or the discovery efficiency.

5.4 Comparison between three protocols

In Chapter 4, we compared the performance of Ahoy with that of the reactive and

proactive protocol in terms of overhead traffic (including frequent updates and false

positive queries). In that chapter, we concluded that the protocol choice should de-

pend on the ratio between query and advertisement rates. When queries, compared

with advertisements, are occasionally sent, the reactive protocol performs the best.

When queries are sent very frequently, the proactive protocol performs the best.

Ahoy performs the best in between these two extreme cases. Dependent on the dif-

ferent network settings, the range of ratio’s in which Ahoy performs best varies. For

example, it is between about 0.1 and 107, when s = 4 and d = 5 (see Section 4.4.1).

In dynamic networks, Ahoy and the proactive protocol need to broadcast frequent

advertisements to update changes in the network. The reactive protocol is not

influenced in this respect, because it does not broadcast any advertisement. For

obtaining the same performance in the dynamic cases, i.e., to keep the same ratio of

queries and advertisements, the reactive protocol can send more frequent queries in

dynamic networks than in static ones. The difference with the static case is getting

smaller when nodes move fast, because fewer extra updates are then generated (see

Section 5.3.5).

The overhead traffic generated by Ahoy and by the proactive protocol in dynamic

networks is hard to compare. With the proactive protocols, such as CDS[26], nodes

generally record the existing context information types and their addresses. It is the

148

task of the underlying routing protocols to locate the position of the requested con-

text information types. They remove the disappearing context information types

locally when they are not refreshed for a certain time interval. No further an-

nouncement is sent to the network. On the other hand, Ahoy takes over part of the

effort from routing protocols and can provide possible discovery directions. It keeps

routing information updated whenever there is any change. Especially, in dynamic

networks, Ahoy spends much effort to update such routing information, e.g., adver-

tisement loops are generated when context information types are removed. It is not

fair to compare directly the overhead traffic generated by Ahoy and the proactive

protocol any more in such an environment.

Chapter 6

Vulnerability Analysis

Security is one of the major concerns in telecommunication and computer networks,

especially in mobile and wireless environments. General security challenges in ad-

hoc networks are due to unsecured wireless links, limited resources, large and dense

networks, lack of fixed infrastructures, unknown topology, and physical attacks [84].

From the literature, see e.g., [4, 81], attacks in ad-hoc networks can be classified

into two categories: passive and active attacks. Passive attacks do not interfere

with networks directly. One typical behavior is network eavesdropping. In contrast,

active attacks influence networks directly, such as active interfering, and denial of

service (DoS) attack. Active interfering attacks try to interfere with the message

packets, including packet dropping, modification, and packet replaying. DoS attacks

attempt to make context sources unavailable for the intended users, e.g., by flooding

packets.

These different attacks cause a variety of damage against security attributes.

[4, 81] define a few basic security attributes: confidentiality, integrity, availability,

authentication, and non-repudiation. For discovery protocols in MANETs, damage

can be categorized into three classes: privacy intrusion, lower discovery efficiency,

and network jamming. Privacy of nodes is intruded, if confidentiality of those nodes

is violated. The discovery efficiency gets lower and networks are sometimes jammed,

if integrity and availability of nodes are disrupted. Since the original Ahoy does not

have authentication requirements and needs to assure the originator of a message,

we do not consider the security attributes of authentication and non-repudiation.

In this chapter, we discuss the damage in detail and compare their effects on three

types of protocols: Ahoy, the proactive, and reactive protocols. In the remainder of

149

150

the chapter, we refer to them as “the three protocols”. In case of serious risks, we

propose security countermeasures to enhance the network security in Ahoy.

This chapter is structured as follows. We briefly introduce the attacks that we

focus on, and the damage they generate in Section 6.1, and 6.2, respectively. We

then describe qualitatively to which extent the three protocols can be damaged by

the attacks, and how they compare in this respect. We compare privacy intrusion

for the three protocols in Section 6.3, discovery efficiency in Section 6.4, and network

jamming in Section 6.5. In Section 6.6 we propose possible countermeasures. Finally,

we conclude the chapter in Section 6.7.

6.1 Summary of Attacks

Vulnerability of a discovery protocol is any software flaw that leaves a discovery pro-

tocol open for potential exploitation, and an attack towards a discovery protocol “is

an attempt to bypass the security controls” of such a protocol. “The success of an

attack depends on the vulnerability of the system and the effectiveness of existing

countermeasures” [4]. In this chapter, we analyze various attacks to the discov-

ery protocols, especially regarding the exchanged information during the discovery

phase, and study their impacts on the discovery protocols. We address the perfor-

mance of a discovery protocol, when adversaries attempt to eavesdrop, delete, mod-

ify, replay, and flood exchanged information. We do not consider attacks towards

other communication protocols and other layers, such as wormhole and blackhole

on the network layer, and traffic analysis, monitoring, and WEP weaknesses on the

data link layer. The attacks that we consider, are listed as follows.

• Network eavesdropping. Adversaries sniff the exchanged packets, but do

not influence them directly. They learn the parameter settings and the con-

tents of the packets. The eavesdropping itself does not damage the perfor-

mance of the network. However, it intrudes the privacy of the nodes in the

network. Adversaries intend to gather specific information from the different

packets as is shown in Table 6.1.

• Packet dropping. Adversaries refrain from processing and forwarding the

packets. The nodes that are supposed to receive the packets do not receive

151

Table 6.1: Information gathered from different packets by network eavesdrop-
ping.

Packets Information Gathered

Advertisement Which information is available where in the network?
Query Who is looking for which information?
Reply Who is providing which information to whom?

them. Depending on which packets the adversaries drop, the impact from this

attack is different, as shown in Table 6.2.

Table 6.2: Impact on dropping different types of packets.

Packets Impact

Advertisement Information in some part of the network is outdated.

Query
Information in some part of the network can not be

discovered.

Reply
Information in some part of the network can not be

reached.
All packets Adversaries are out of reach for other nodes.

• Modification. After capturing packets, adversaries may modify contents of

the packets and forward them further into the network. Nodes containing

false information behave erroneously. The major impact include lower level of

context availability, longer searching time for required information, and extra

traffic to discover non-existing information.

• Packet replaying. Adversaries keep on replaying outdated packets to the

network rather than sending the updated packets. Although the impact is not

as severe as the ones from modification attacks, they are of the same kind.

• Packet flooding. Adversaries send massive amounts of packets at high rate

through the network. This is one of the Denial of Services (DoS) attacks which

attempts to make the requested information unavailable for the intended users.

152

No matter which packets adversaries generate, the major objective is to jam

parts of the network, and in some cases even to break down the entire network.

6.2 Damage from the attacks

The basic security attributes with respect to a discovery protocol are:

• Confidentiality ensures that unauthorized entities cannot overhear certain

information.

• Integrity ensures that exchanged information is not modified nor corrupted.

• Availability ensures that intended context information is accessible.

When adversaries successfully attack the discovery protocol to violate the above

security attributes, other nodes and the network are damaged in the following three

aspects: privacy intrusion, lower discovery efficiency, and network jamming.

• Privacy intrusion. Adversaries try to violate confidentiality and sniff infor-

mation, which is exchanged in the network, and which is not public. There are

two kinds of networks in terms of privacy: public and private. Public networks

are open to everyone. The information of such a network can be shared with

all the parties. Private networks have a limited number of participants. In-

formation is restricted to these participants. When adversaries try to capture

and read the information in private networks, they invade the privacy of the

participants of the network. This type of damage is generally caused from

network eavesdropping attacks.

• Lower discovery efficiency. When correct (and updated) information is

published in the network, a proper discovery protocol can locate the required

information in the network if it exists. When adversaries disorder this infor-

mation or the transmission schedule, nodes can not find the right information,

or can only find the right information after some delay. In this case, availabil-

ity and integrity are violated. This type of damage can be caused by packet

dropping attacks, modification attacks, and replaying attacks.

153

• Network jamming. Some attacks towards availability and integrity can

lead to network jamming, which may result in a (partial) network breakdown.

Packets cannot pass through this (part of) network. It can also cause a de-

lay in the discovery of information. This type of damage is mainly evoked

by packet flooding attacks. Adversaries simply release large amounts of re-

dundant packets into (parts of) the network. Network jamming can also be

induced by attacks like packet dropping, modification, and replaying. When

false information is propagated through the network, wrong queries can be

sent to the wrong nodes. When adversaries cooperate, they can target certain

node(s) and exhaust the network in that area.

We summarize the damage and their related attacks in Table 6.3.

Table 6.3: Damage from various attacks in the network.

Damage Attacks
Violated Security

Attributes

Privacy intrusion network eavesdropping confidentiality
Lower discovery

efficiency
packet dropping, modification,

replaying
availability, integrity

Network jamming
packet flooding, packet dropping,

modification, replaying
availability, integrity

In the following three sections, we investigate all three classes of damage on Ahoy,

as well as on the proactive, and the reactive protocol in detail. We compare the

vulnerability of the three types of protocols. For a fair comparison, we assume that

the advertisements in the proactive protocol and the queries in the reactive protocol

are broadcasted within the same discovery range as in Ahoy, i.e., within d hops. We

do not weight the consequences of each class of damage here, because the amount of

damage highly depends on the different scenarios and perspectives. For example, in

a private network, end users might consider privacy the most important issue; while

network administrators focus more on the overall network traffic conditions.

154

6.3 Privacy Intrusion

The privacy of network participants is intruded when the exchanged information

is eavesdropped by adversaries. Ahoy, the proactive, and the reactive protocols,

expose different information in their advertisement, query, and reply packets. Here,

we assess two aspects for three different protocols. First, the rate at which packets

can be captured by the adversaries. This rate depends on how often and to which

extent packets are exchanged. Second, the amount of information adversaries can

obtain from a specific packet. This depends on how accessible the information is,

i.e., how well the information in a packet is secured against adversaries.

6.3.1 Sniffing of advertisement packets

In Ahoy, context advertisement packets contain the hashed context information types

of nodes within the range of d hops. These packets are sent whenever there is any

change on the existence of the information in reach. We do not consider keep-alive

packets here, since there is no conceptual information contained in such packets.

Adversaries can learn the following knowledge directly from an advertisement:

• Parameter settings of the ABF, including the width w and the depth d, which

is also the maximum number of hops for context discovery.

• Information regarding context density distribution in the network. ABF uti-

lizes 0 and 1 to represent the existence of context information types. The more

1s’ are located in the filter, the more information types are available by the

current node.

Adversaries can not easily retrieve all exchanged information from the packets,

since only information a few hops away is captured. Also, the context information

is coded by hash functions. Theoretically, if we use one-way hash functions, it is

unlikely to retrieve the original information from the hash results [72]. However,

if the context information types are also public and standardized, adversaries can

obtain the hash results by hashing every type and compare the hash results. To

decode an ABF with multiple types, adversaries need to not only hash each single

type, but also the combinations of the types. Thus, it will cost adversaries extra

effort to existing information in the network.

155

If Ahoy uses standard context information types and hash functions, adversaries

can check whether specific context information is available somewhere. As discussed

in Chapter 4, the false positive probability increases with the number of hops. Ad-

versaries can only test with quite good accuracy whether specific context information

types are located in their direct neighbors. This information can be used later, if

adversaries would like to modify the content of packets or jam the traffic towards

some nodes.

On the contrary, the proactive protocol broadcasts the original information to

all the nodes within d hops. Once such a packet is captured, adversaries can easily

locate the position of the related information within a certain scope. In the worst

case, adversaries will know the locations of all the information in the network.

The reactive protocol does not exchange any information beforehand. As a result,

there is nothing to be eavesdropped in this phase.

We summarize the two privacy aspects we considered when adversaries eavesdrop

advertisement packets into Table 6.4.

Table 6.4: The vulnerability of three protocols when adversaries sniff advertise-
ment packets.

Ahoy Proactive Reactive

Packet
propagation range

all nodes in d hops
all nodes in d

hops
none

Content format ABFs
original

information
none

Consequences

only regional
information

exposed, hard to
retrieve, but can

check the
availability

some/all
information

exposed
none

It is obvious that reactive protocols protect the “where is what” data best, since

there are no advertisement packets exchanged in reactive protocols. In both Ahoy

and the proactive protocol, advertisements are only propagated within a limited

range (d hops). However, in the proactive protocols, all advertisement information

156

is public to every one, while in Ahoy information is hashed. Adversaries can obtain

advertisement information, but it is not easy for them to obtain the exact location of

the available context information. In general, Ahoy therefore performs only slightly

worse than reactive protocols, but it performs better than the proactive protocols.

6.3.2 Sniffing of query packets

Whenever a node looks for certain context information, it sends out a query. In the

design of Ahoy, queries can be sent out as either original text strings or BFs. If

queries are sent in the string format, adversaries can learn exactly who is looking

for what information from the sniffed query packet. If queries are hashed into BFs

before sending out, adversaries cannot easily decode the queried information from

BFs.

One straightforward way to decode queried information is by hashing arbitrary

context information types, and comparing the results with the query BFs. The

amount of work to decode highly depends on the number of context information

types in the network. On average, adversaries need to perform the total number of

context information types divided by 2 times calculations to decode one query BF.

Note that this, in general, requires much less effort than finding all the information

from ABFs (discussed in Section 6.3.1), which bits may be shared by several con-

text information types that result in false positives. Without decoding query BFs,

adversaries only know who is looking for information, but not which information.

In this respect, we prefer to send queries as hashed BFs rather than text strings.

However, there are also other issues that we have to consider. In Section 6.4.1, we

will show that hashed BFs also have drawbacks.

The exposure to adversaries also depends on the number of nodes that need to

forward a query. If more nodes are involved in querying, the probability increases

that an adversary sniffs a query. The number of nodes that forward queries depends

on the chosen query method. There are two possible query methods in Ahoy: parallel

and sequential.

• In the parallel query method, a query is forwarded to all neighbors with which

ABF a match is found. The query is forwarded until the node is reached that

contains the queried information or until the query has traveled d hops.

157

• In the sequential query method, a query is first sent along one path. If a

node along this path contains the queried information, querying is stopped.

Otherwise, it is sent along other paths until the context source is found. In

the best case, only nodes along one query path need to propagate the query

message. In the worst case, all paths that may lead to a match are searched,

just as in the parallel method.

In general, fewer nodes are therefore used in the sequential method. The drawback

of the sequential method, however, is that it in general will also take more time to

find the context source. In that respect a choice has to be made between speed on

the one hand, and the amount of generated traffic and level of security on the other

hand.

Both the proactive and reactive protocols send queries in original formats, such

as text string, XML, etc. In the proactive protocol, only one query is sent to the

exact destination, while in the reactive protocol, queries are broadcasted to all the

nodes within d hops. Obviously, there is a higher probability of capturing a query

packet in the reactive protocol than in the proactive protocol. We summarize above

discussions into Table 6.5.

Table 6.5: The vulnerability of three protocols when adversaries sniff query
packets.

Ahoy Proactive Reactive

Packet
propagation range

selective nodes
in d hops in

maximal

one node and
related nodes in

the path

all the nodes in
d hops

Content format
BFs / text

strings
original

information
original

information

Consequences
selective queries,

possibility to
hash them

only exposed to
the nodes along

one path

all information
exposed

Ahoy sends out fewer queries than the reactive protocol due to the feature of “se-

lective querying”. However, in general, it sends out more queries than the proactive

protocol. Only in the best case of sequential querying, nodes along one path need to

158

propagate queries, as is the case in the proactive scenario. Especially in scenario’s

in which each context type is scarcely available in the network, the “selective query-

ing” of Ahoy will pay off. In that case, the performance of Ahoy will be comparable

to the proactive approach, whereas it is likely to perform significantly better than

reactive protocols, in which adversaries can easily obtain query information.

The three protocols expose the same amount of information once a query packet

is captured. However, in Ahoy there is the option to protect the queried information

by sending queries in BF format, and thus force adversaries to use a considerable

amount of effort to understand which information a node is looking for.

6.3.3 Sniffing of reply packets

Reply packets are composed of the related query packet identification and the IP

address of the replying node that has the requested context information. Ahoy,

the proactive, and the reactive protocols have the same message format. Reply

packets are sent by a node when it discovers that it contains the queried information.

Adversaries can obtain the same amount of information about who is providing

information in all three protocols.

6.3.4 Summary

Ahoy exposes much less information than the proactive protocol and slightly more

than the reactive protocol in the context advertisement phase. It generates much less

queries to be sniffed than the reactive protocol and slightly more than the proactive

protocol in the context query phase.

Ahoy has an option to hash the queried information so that adversaries cannot

obtain it easily. In the context reply phase, all three protocols perform the same in

terms of vulnerability.

We do not evaluate the importance of information here. It highly depends on

the different scenarios and perspectives. “Who has what?” (learn from advertise-

ments) and “Who is looking for what?” (learn from queries) are considered equally

important. Ahoy performs reasonably well in terms of privacy compared to the con-

ventional protocols. Ahoy can protect both types of information by using Bloom

159

filters. Adversaries can decode original information from hash results. However, it

requires a lot of extra effort from adversaries to do so. It does not damage the nodes

themselves if one or more adversaries eavesdrop packets, but the sniffed information

might be used for other attacks, such as packet modification and flooding.

One solution to protect data for all three protocols is encryption. Section 6.6

addresses this in more detail.

6.4 Lower Discovery Efficiency

When adversaries release incorrect information in the network, nodes can not dis-

cover the right information, or only after some delay. Adversaries can modify the

contents of packets or send incorrect (or outdated) information themselves. They

can also eliminate updates by simply dropping entire packets, or delay the updates

by replaying old messages. Network eavesdropping does not have a direct influence

on a lower discovery efficiency, but it can provide the adversaries with necessary

information to modify packets.

In the following subsections, we analyze the influence of modification, packet

dropping, and replaying on the different types of packets, and we propose possible

intrusion prevention solutions.

6.4.1 Modification

Three kinds of packets can be modified by adversaries: advertisement, query, and

reply packets. Modified packets are (partially) distributed over a d-hop range, if the

discovery range is restricted to d hops for all three protocols. How many nodes will

be affected, depends on the protocol and the location of the adversary node. The

closer the adversary node is to the node that sends the packet, the larger the area

is, through which the modified packet is propagated. In case of advertisement, the

adversary node itself can also send false information, which will be distributed over

all the nodes within d hops in both Ahoy and the proactive protocol. In general,

modification of advertisement packets reduces the information availability directly,

and thus requested context information types either cannot be found or might take

longer time to be found when queries are sent sequentially. If query packets are

160

modified, requested information cannot be found. Adversaries can also fake the

replies, which leads to incorrect connections, no connection at all, or can lead to an

overload of traffic around adversaries and their neighboring nodes.

The differences between the three protocols narrow down to differences in packet

propagation frequencies and ranges, and content formats. We discuss the impact of

modifying different packets in detail in the following.

Modify context advertisement packets. When adversaries modify informa-

tion, nodes in the advertisement propagation range are affected. Advertise-

ments are sent to all nodes d hops away in Ahoy and the proactive protocol,

and there is no advertisement in the reactive protocol. The same number of

nodes are thus affected in both Ahoy and the proactive protocol, while no node

is affected in the reactive protocol.

There are also differences in format. Ahoy presents all advertisements in ABFs,

while the proactive protocol utilizes the original text strings. Adversaries can

change the bits (in Ahoy) or the letters (in the proactive protocol) simply

without understanding what is presented in the advertisement. In Ahoy, one

bit can be shared by multiple context information types. Changing a bit from 1

to 0 can remove one or more context information from the filter; changing a bit

from 0 to 1 can add one or more context information in the filter. For example,

we have the following filter in Figure 6.1(a). We assume “temperature” is

coded into the bit position “2” and “6”; “printer” is coded into the bit position

“2” and “5”. When we change the bit position “2” from 1 to 0, as is shown

in Figure 6.1(b), both the “temperature” and “printer” information types are

removed. This will lead to the decision not to check or forward queries that

request for that information (false negatives). When we change the bit position

“3” from 0 to 1, as is shown in Figure 6.1(c), it adds “beamer” (the bit position

“2” and “3”), “music player” (the bit position “3” and “5”), and “VoIP” (the

bit position “3” and “6”). This will create extra queries that are forwarded to

nodes that do not have that information (false positives).

Adversaries can modify advertisements arbitrarily or specifically. Arbitrary

modification revises the contents of advertisements randomly. In the proactive

protocol, this would mean that letters are arbitrarily changed in an advertise-

ment. In English, there is a slight chance that two or more words have the

161

1 2 3 4 5 6
0 1 0 0 1 1

(a) Original

1 2 3 4 5 6
0 0 0 0 1 1
1 2 3 4 5 6
0 0 0 0 1 1

(b) Modify the bit
position “2”

1 2 3 4 5 6
0 1 1 0 1 1

(c) Modify the bit
position “3”

Figure 6.1: A filter when its bit position “2” or “3” is modified.

same length and only differ by one letter. The probability of multiple context

information types being removed or added at once, is smaller than in Ahoy.

The strength of Ahoy is that it can compress information. However, this also

makes it vulnerable, because slight modifications can lead to relatively large

losses of information.

If adversaries specifically modify advertisement contents, they would like to

add or remove some specific “wrong” information into the advertisement pack-

ets. This can be easily done in the proactive protocol. In Ahoy, this is only

possible if adversaries know the applied hash functions. As was discussed in

Section 6.3.1, it will take a considerable amount of effort for the adversaries to

learn the hash functions. In this sense, Ahoy is therefore less vulnerable than

the proactive protocol.

There is another field in the advertisement packets of Ahoy, which is called

the generation ID, GID. If the GID is modified, there might be extra update

requests and advertisements due to the maintenance principles defined in Ahoy

(see Chapter 3). There is no specific definition of this fields in the proactive

protocol. We can, however, imagine that the proactive protocol also has a

similar field to identify the advertisement packets and that it applies a similar

mechanism to request for updates.

We summarize the above discussion in Table 6.6. The reactive protocol per-

forms the best in the advertisement phase. The same number of nodes are

influenced in Ahoy and the proactive protocol. Modifying the GID field in

Ahoy might cause some unnecessary updates, but the effects are minor. The

162

proactive protocol might be affected in the same way, if it also applies a simi-

lar mechanism. The modification of the advertised information itself is more

damaging. When adversaries modify information arbitrarily, the discovery effi-

ciency in the infected region is lower for Ahoy than for the proactive protocol.

Specific information, however, can be more easily modified in the proactive

protocol than in Ahoy. The vulnerability of Ahoy and the proactive protocol

depends on several things, such as advertisement and query rate, d, the size

of the network, and whether or not the hash functions in Ahoy are standard

and public.

Table 6.6: The vulnerability of three protocols when adversaries modify adver-
tisement packets.

Ahoy Proactive Reactive

Packet
propagation range

all nodes in d hops
all nodes in d

hops
none

Content format ABFs
original

information
none

Consequence

Partially influenced
with high chance of
false positives and
negatives, because
slight modification
may lead to large

changes. Intentional
modifications only
possible when hash

functions are known.

Part of or the
entire network,
but less false
positives and

negatives than
in Ahoy.

Intentional
modification can
be easily done.

none

Generally, the effect is limited when only one adversary modifies advertise-

ment packets. Most likely, nodes can reach the appropriate context sources

via other paths, which are not affected. Moreover, if adversaries only modify

advertisement packets once, the “wrong” information will be replaced by the

correct one when the ABFs are updated. If adversaries continue modifying

advertisements, the “wrong” information is also kept in the updates. The

infected region will then continuously be malfunctioning. In addition, it will

163

take a lot of effort for Ahoy to remove “wrong” information layer by layer,

while the proactive protocol can simply remove it at once. In Section 5.3.2, we

discussed the process and the number of updates needed to remove one infor-

mation in an Ahoy network. In the worst case, several adversaries coordinate

attacks in a region, and a node in that region might completely be shut off

from its surroundings.

Adversaries thus only need little effort to modify advertisement packets, whereas

they can severely affect nodes. However, even in the worst case, the overall

effect on the network will probably be limited, because the information in the

network is distributed in a very decentralized way. Contrary to centralized

protocols, the damage that is done to one or even several nodes, does not

necessarily have an effect on the other nodes in the network.

This strength of a fully distributed ad-hoc network is also a weakness, because

adversaries can quite easily damage it without being noticed. Without knowing

what information is exactly included or accessible from others, it is hard to

detect this kind of attacks by only reading the contents. For the proactive

protocol, when the density of adversaries is low compared with that of the other

nodes, it is possible to detect adversaries by comparing advertisement contents

from multiple neighbors, for example through Byzantine agreement [48]. When

there are many adversaries in one region, it is difficult to recognize which nodes

provide the correct information. For Ahoy, comparing ABFs from neighbors

will not directly lead to the detection of adversaries, since information in ABFs

is aggregated. However, it is possible to check for inconsistencies in the ABFs

to detect an attack. According to our study in Chapter 4, the number of false

positive queries can be restricted if the width of the filter w is larger than

the product of the number of hash functions b and the maximum numbers of

context information types in reach. We need to define a large enough w to

achieve a small number of false positives. Such a filter should have a fair ratio

of bits that are set to 0 and 1. Furthermore, all the information that is in the

upper layers, should also be duplicated in the lower layer (see Section 3.3.3).

We propose to apply rules to check the proportions of 0s’ and 1s’ in the filter

and to check for duplication of the information in the lower layers. This issue

is further addressed in Section 6.6.4. Finally, modifications can be detected

164

by using the Michael algorithm (the message integrity code) [23], which will

require larger packet sizes and more computations, as is addressed in detail in

Section 6.6.

Modify query packets. In the proactive protocol, queries are sent to specific

nodes along one path. In the reactive protocol, queries are sent to all the

nodes within d hops. In the proactive protocol, only few nodes will there-

fore be affected by a modified query packet, while many more nodes will be

affected in the reactive protocol. In Ahoy, queries are sent either to one pos-

sible destination or to all nodes that possibly could contain the information.

The number of nodes that are queried depends on the query method, as was

discussed in Section 6.3.2. Most of the time, Ahoy has a slightly larger, but

still comparable impact area as the proactive protocol. In general, the reac-

tive protocol has a much higher probability to be attacked than the two other

protocols.

An Ahoy query packet is composed of query identification (QID), query mes-

sage, a sender address, and time-to-live. QID is the unique identification for

each query. The query message is the information which the query node is

looking for, and can be sent in a text string or BF format. Time-to-live indi-

cates the number of hops a query can be propagated further. Sender address

is the IP address of the query initiator. A query packet in the proactive or

reactive protocol can contain the same information with the exception that

query messages are always in original formats. Modifying QIDs, query mes-

sages, or sender addresses can prevent the query node from finding the correct

information. As a result, no information or wrong information is found. If

there exist other paths to the requested context source, which do not pass the

adversaries, it is still possible to find the requested context information. In

this respect, the reactive protocol and the parallel query method in Ahoy are

more likely to find that information faster than the proactive protocol or the

sequential query method in Ahoy.

Time-to-live is a specific parameter that restricts the propagation range. Mod-

ifying the time-to-live parameter influences the query range. If it is modified

to a smaller number, the discovery range shrinks and the probability to find

the required information reduces. If it is modified to a large number, the

165

query may be forwarded a large number of hops. Certainly, there is a higher

probability of obtaining the required information in a larger discovery range.

However, we do not prefer to access information very far away, because in

that case more query traffic is generated, and there is a higher false positive

probability.

If more adversaries are located in a specific region, there is a higher probability

of having false queries in that region. In the worst case, a targeted attack

occurs in which all query packets from a specific sender are modified. During

a targeted attack, the specific sender can not find any information, because it

is isolated by the adversaries. Such an attack can occur in all three protocols,

but is rather difficult in a mobile network, because it requires adversaries to

stay in the query range of the targeted node.

In a reactive protocol, the probability that queries are incorrectly formulated

is relatively high, because many queries are sent. However, the probability of

being affected is not the only concern. A single attack (with low probability)

can still be quite harmful. When adversaries capture both advertisements and

queries, information does not only become unreachable, but adversaries can

also direct all the query traffic to a targeted nodes and exhaust that node.

This can be done by modifying queries, such that they look for all context in-

formation that is advertised by the targeted node. This is not possible in the

reactive protocol, because there is no advertisement and it is not known which

context information is located where. Similarly, adversaries cannot target spe-

cific nodes in Ahoy, when queries are sent out as strings, because adversaries

cannot match the query context information with that in the advertised ABFs

(suppose using perfect one-way hash functions). If the queries, however, are

sent out as BFs, the adversaries can easily set the same bit positions as in the

ABFs from the target nodes. In that case, the queries are forwarded to the

targets and the targets get exhausted. The first node which is exhausted will

be the adversary itself and some of the nodes nearby it. This can cause (rather

large) negative effect. If queries are not encrypted, using the BF format can

provide some level of protection over queried contents than using the text for-

mat. However, if one of the main security requirements is to prevent modifying

contents of exchanged packets by adversaries, we suggest to define text strings

166

instead of BFs as query format. We summarize the above discussions into

Table 6.7.

Table 6.7: The vulneralibility of three protocols when adversaries modify query
packets.

Ahoy Proactive Reactive

Packet
propagation

range

selective nodes in d
hops

one node and
related nodes in

the path

all nodes in d
hops

Content
format

ABFs / text strings
original

information
original

information

Consequence

selective queries,
much fewer nodes

affected than in the
reactive protocol,

unreachable queried
information through
adversaries, limited
(when using text
strings) targeted
attacks, discover

faster when affected
using parallel method.

affect to the
nodes along one

path,
unreachable

queried
information,

targeted
attacks.

most nodes are
affected among
three protocols,

unreachable
queried

information,
limited targeted
attacks, discover

faster when
affected.

The Michael algorithm [23] can be applied to detect modifications, as is ad-

dressed in detail in Section 6.6. Furthermore, receivers can detect the attacks

if the time-to-live information is modified to a number larger than d. It is

always an option to encrypt the whole query packet for all three protocols, as

will be discussed in detail in Section 6.6. Additionally, we can apply a rule

for Ahoy in which we limit the time-to-live parameter in order to restrict the

influence area. This will also be discussed in Section 6.6.

Modify reply packets. Reply packets consist of QID, and IP address. Changing

any of those fields will result in incorrect connections or no connections with

the requesting node. It reduces context information availability and requires a

167

longer discovery duration if additional queries are generated. If there are more

adversaries or more frequent reply packets modified, the probability to set up a

correct connection to the right context source will decrease. A targeted attack

can be performed in all three protocols. This is done by modifying replies from

one specific node. The impact of this attack is that the targeted node can not

provide all requested context information. If adversaries are located nearby

the targeted node, they can block more replies. If the targeted node is only

surrounded by adversaries, it cannot be used as a context source. Of course,

adversaries can totally isolate the targeted node by modifying all ingoing and

outgoing packets. But this is not the most efficient way to isolate a node. An

easier way can be by dropping all the packets or simply interfering with the

radio frequency of the targeted node.

All three protocols perform the same towards this attack. We can apply the

Michael algorithm to detect the attacks. Besides, we can also monitor QID

and drop the duplicated packets with the same ID which we will address further

in Section 6.6.4.

Summary. In the advertisement phase, the reactive protocol performs the best.

In the query phase, the chances for an attack are smallest for the proactive

protocol, but the proactive protocol is quite vulnerable against targeted at-

tacks. All three protocol perform the same in the reply phase. In all cases,

Ahoy performs as well as or only slightly worse than the best protocol. Which

protocol performs overall the best depends on the network structure, and ad-

vertisement and query rates. However, in general, Ahoy definitely does not

perform worse than the other two protocols. Encryption is always an effective

but expensive solution against modification attacks. The Michael algorithm

can be used to detect modification attacks, we address this in more detail in

Section 6.6.

168

6.4.2 Packet dropping

Adversaries can drop advertisement packets to keep information outdated, and can

drop query and reply packets to prevent nodes from finding the required informa-

tion without delay. Similar as for the modification attack, targeted attacks can be

performed here. Adversaries can target one node, and drop all the packets from this

node. If the targeted node is only surrounded by adversaries, it will be isolated from

other nodes in the network. As we have already mentioned, such an attack requires

the cooperation of several adversaries, and is not easy to maintain. Whenever a

normal node moves into the communication range of the targeted node, a path to

the other part of the network can be established from this node, and the isolation

is lifted.

For the three discovery phases, the effects of packet dropping can be described

as follows:

Drop context advertisement packets. In Ahoy and the proactive protocol,

advertisements are forwarded to nodes within d hops, while no advertisements

are forwarded in the reactive protocol. When adversaries drop an advertise-

ment, only a part of the network is influenced by the attack. Especially, when

the network density is high, nodes can obtain the updates through other paths.

This attack has absolutely no impact on the performance of the reactive pro-

tocol, but may cause one or couple of context sources unreachable or increase

the discovery duration when the proactive protocol or Ahoy is applied.

Drop query packets. Queries are sent to selected nodes along multiple paths

in Ahoy, to nodes along one path in the proactive protocol, and to all nodes

(within the query range) in the reactive protocol. It is most likely that the

querying duration is extended in the proactive protocol and in the sequential

query method of Ahoy, because once the querying nodes notice there is no

reply, they try to query a different path. On the other hand the query duration

stays the same in the parallel querying method of Ahoy and in the reactive

protocol. Multiple paths are queried simultaneously in these protocols, which

implies that dropping of query packets along one path does not influence the

discovery along the other paths.

Drop reply packets. If adversaries drop reply packets, the node that sent the

169

query cannot discover the requested information via that path. If there ex-

ist other paths which do not pass adversaries, the node that sent the query

can still obtain the requested information from corresponding context sources.

To apply different query methods results in different discovery duration here.

Similar as the case of dropping query packets, the sequential query method of

Ahoy and the proactive protocol requires longer discovery duration than the

parallel method of Ahoy and the reactive protocol.

Summary.

In general, adversaries need to spend little effort to make packets dropped in

the network. On the other hand, packet dropping has a very limited impact

on the context discovery, especially in high density networks where there are

multiple paths between two nodes, nodes can then retrieve information via

paths that are not affected by adversaries. However, the negative impact

increases when there are more adversaries that can drop packets. In that

case, there is a higher risk that all paths between two nodes are blocked by

adversaries, and that some nodes in the network cannot discover and share

information between each other any more.

This type of attack is very difficult to be detected. If a node does not re-

ceive advertisements from a neighbor for a while, it might conclude that the

availabilities of context information types reachable from this neighbor have

not been changed. For query and reply packets, a node might not even no-

tice if some or all of them are dropped, because queries and replies are not

mandatory packets that a node must receive periodically.

Ahoy performs slightly worse than the reactive protocol (in the advertisement

phase), and it performs slightly better than the proactive protocol (in the

query phase).

6.4.3 Replay

When adversaries replay the same advertisements over and over again, they send

outdated information in part of the network. This will lead to longer discovery times

170

and more false positives and false negatives. Adversaries spend little effort to replay

advertisements, and the impact is getting larger when there are more adversaries.

In the worst case, information in the entire network is outdated. Similarly as in the

case of dropping advertisements, the reactive protocol is influenced the least, since

no advertisements are broadcasted. If advertisements are not updated, Ahoy nodes

do not propagate them, which will limit the impact of this attack significantly. If

the proactive protocol also applies this principle, it has the same resilience as Ahoy

in this respect.

When queries and replies are replayed, the network can be jammed. This we

discuss further in Section 6.5.

One expensive, but very effective intrusion prevention solution for all replay

attacks mentioned above is encryption. We discuss this further in Section 6.6.

6.5 Network Jamming

Jamming of the network is another attempt to make (requested) information un-

available for true users. The most severe attack in this respect is to flood packets

into the network. The aim of the attack is to generate (partially) congested networks

or nodes. Adversaries do not focus on the content of the exchanged packets, but

just on the sheer amount of packets. Flooding packets can be especially harmful for

ad-hoc networks, since most of the devices in such networks are battery-supplied.

Adversaries can send massive amounts of messages with high frequency. As a result,

batteries are exhausted and/or large portions of the limited bandwidth are occupied.

Especially, we consider that a replaying attack has a similar effect as flooding. In

the remainder of this section, we analyze the impact from flooding of different types

of packets.

6.5.1 Flooding advertisement packets

In Ahoy, an advertisement is generated whenever there is a change in the outgoing

filter of the node. This change can originate from the node itself or from the incom-

ing filters of its neighboring nodes. If adversaries flood unchanged advertisements

into the network (like replaying), they will not be propagated, since no changes

171

are detected. The only exhausted nodes will be the adversaries themselves. If ad-

versaries flood different advertisements every time, the nodes within d hop range

update accordingly, which will lead to exhausted nodes within a d hops range.

As mentioned before, the reactive protocol does not propagate advertisement

packets, whereas the proactive protocol propagate advertisements to all nodes within

d hops. Unlike Ahoy, proactive protocols, in general, do not exchange packets based

on their contents. Whatever contents are in the advertisements, nodes propagate

them to every node within d hops, which creates much more extra traffic than in

Ahoy. However, proactive protocols can be adjusted such that they apply the same

principle as in Ahoy, and limit the number of extra packets accordingly.

However, a drawback of Ahoy is that it consumes a lot of effort to remove infor-

mation layer by layer as discussed in Section 5.3.2, while a proactive protocol can

simply remove it at once. This scenario occurs whenever some context information

types are removed in the newly broadcasted advertisements by adversaries, or when

adversaries stop working and nodes realize some context information types have

been removed.

One potential problem is the generation of extra false positive queries. When

adversaries advertise different contents every time or the same contents for a long

time, there is a high probability that they advertise information that does not exist.

This will result in many false positive queries, which add an extra burden on the

traffic load to the nodes in that area. This problem occurs in both Ahoy and proactive

protocols. Some rules can be applied to detect the attacks and minimize the impact

to the network as addressed further in Section 6.6.4.

We summarize the impact of flooding advertisement packets on the three proto-

cols in Table 6.8.

6.5.2 Flooding query packets

The number of nodes that will be exhausted due to the flooding of queries depends

on the type of protocol. Some nodes within d hops will be affected in Ahoy, no

nodes are affected in the proactive protocol, and all nodes within d hops are affected

in the reactive protocol. Especially, adversaries themselves are the first ones to

be exhausted. In Ahoy, it is more difficult to harm many nodes by flooding query

172

Table 6.8: The vulnerability of three protocols when adversaries flood advertise-
ment packets.

Ahoy Proactive Reactive

Packet
propagation

range

all nodes within d hops
distance when contents

are different, no
propagation when

contents are the same

all nodes within
d hops distance

none

Consequence

Partially influenced with
high probability of false
positives, no influence

when replaying the same
packets, lot of traffic to

remove information

Nodes within d
hops are

affected, high
probability of
false positives

none

packets than by flooding advertisement packets. Most of the time, the queries can

not be forwarded further if there is no match found. Therefore, the effects are minor

for Ahoy, while the effects in the reactive protocol can be quite severe. In this

respect, the reactive protocol has as clear disadvantage that it does not announce

context information in advance.

One special case of flooding is replaying queries. If the adversaries simply replay

the entire query packet with high frequency, the packets are dropped at the next

hop. If these packets have the same QID, these redundant packets may be dropped,

dependent on the applied rules. If adversaries generate queries with different QIDs,

the same context information will be queried over and over again. The path to

the queried information will then be heavily loaded. In this case, the proactive

protocol performs the best with only one path congested. Depending on the query

mechanism (sequential or parallel), one or several paths may be congested in Ahoy.

These effects are much smaller than in reactive protocols. For these protocols, the

whole d hops region might be jammed.

One effective solution to minimize the influence of query flooding is to restrict

the query rate, which we discuss further in Section 6.6.4.

173

6.5.3 Flooding reply packets.

Reply packets unicast through the same path as the query packets, but in the

opposite direction. Flooding replies will overload the nodes along the path, including

the adversaries themselves. The effects are the same for all three protocols. The

query node checks the QID in the reply packet. If there is already a connection

established for queried information with the same QID, the remaining, redundant,

packets are dropped. In case the QIDs are different and most likely not the ones

from the query originator, the adversary is detected. However, before detection, it

is still possible that a large number of packets have been sent between adversary

and the targeted nodes.

To utilize an unique reply identification, RID, can help to avoid flooding same

replies from a node. We can apply a rule to restrict per RID per reply per node.

If a node detect few replies with the same RID from one node, it can detect that

node as an adversary. Further, a rule to restrict the number of replies per QID, and

per destination, could help to reduce the effects of reply flooding, but not solve the

problem completely. If a couple of adversaries work together, for example, acting

as a query node and a reply node, they can flood the network with queries and

replies, while nodes along the path will not easily detect the attack. These nodes

will therefore be quickly exhausted.

6.5.4 Summary

Flooding packets at a high rate will lead to extra traffic load. As a result, more

bandwidth is occupied by malicious traffic, and targeted nodes may be exhausted.

In the advertisement phase, the reactive protocol will not be affected by flood-

ing. Ahoy and the proactive protocol perform more or less the same. The exact

performance of Ahoy and the proactive protocol depends on certain applied rules

and on the contents of replayed messages. In the query phase, in Ahoy, only several

paths can get congested due to flooding of queries. This is slightly more than in the

proactive protocol, whereas in the reactive protocol, (part of) the whole network

can be jammed. In the reply phase, all three protocols perform the same.

These results can also be viewed in terms of advertisement and query rates, such

as was done in Chapter 4. There exist certain ranges of advertisement and query

174

flooding frequencies for which each protocol performs “best” (compared to the other

protocols). When the query flooding rates are very high (compared to the flooding

of advertisements), proactive protocols will be the least affected by flooding attacks.

Like in Chapter 4, we expect that there is a large range of flooding frequencies (in

which advertisement and query flooding rates are comparable) for which Ahoy will

perform the best.

For all three protocols, there is no effective solution to protect against flooding

attacks in advance. We can only minimize their effects by applying some rules,

which are discussed in more detail in Section 6.6.4.

6.6 Countermeasures

Ahoy is designed for context-aware networks. It thus intends to publish available

context information types, so that nodes are aware of existing context sources and

know where to find requested information. To understand the broadcasted context

information types from other nodes, some meta-information should be shared by all

entities in Ahoy. The following list summarize this meta-information and how it is

to be shared:

• the width and depth of ABFs: can be deducted from advertisement packets;

• hash functions in use: can be standardized and the number of hash functions

can be added into the advertisement packet;

• context information type: can be standardized.

However, when this meta-information is shared or standardized, it also makes our

network more vulnerable to attacks.

Most of the attacks are difficult to detect and to prevent, as we have discussed in

detail in Section 6.3 through Section 6.5. But it is possible to avoid or minimize the

effects of some attacks, e.g., by using text strings, applying unique QID and RID,

restricting query rates, and using encryption. In this section, we focus on encryp-

tion strategies, the Michael algorithm (the message integrity code), authentication

algorithms, and propose rule management to reduce the vulnerability of Ahoy.

175

6.6.1 Encryption

Encryption is the act of converting data from an understandable form to a non-

understandable one in such a way that it can be converted back with no loss of

information. Encryption is a good way to secure the contents of packets against

undesired usage. It can be applied to particular fields of the packet, such as the

ABF, QID, and RID, or to the entire packet. The encryption algorithm to be

applied depends on the security requirements, and the available resources.

Based on the used key management scheme, modern ciphers can be categorized

into several classes. Symmetric and asymmetric key cryptography are the two major

ones. They are especially useful in ad-hoc networks [4]. Symmetric key algorithms

use the same key for encryption and decryption. This requires the pre-distribution

of keys to the communicating nodes. A drawback is that there are no guarantees

for a reliable and secure way of key management. The advantage of symmetric key

algorithms is that they are fast, because they utilize simple operations. Asymmetric

key algorithms do not require an initial exchange of keys. A public key is used to

encrypt the messages, while the receiver uses a private key to decrypt it. However,

asymmetric key cryptography requires more complicated operations, such as mod-

ular exponentiation. For instance, the typical asymmetric key cryptography RSA

performs 1000 times slower than the typical symmetric key cryptography Data En-

cryption Standard (DES) [19]. There is also a hybrid cryptography system, which

uses asymmetric algorithms to distribute symmetric-keys at the start of a session

[17].

Generally, expensive cryptography systems, are not preferred in Ahoy networks,

because it may overload the nodes and makes the discovery slower. However, when

the system requires very high security protection, a more sophisticated encryption

algorithm should be used to protect the content of exchanged packets. The choice

of symmetric, asymmetric, or hybrid encryption algorithms depends on such con-

siderations.

The more simple symmetric key algorithms, for example, can be used in a con-

ference environment. All the devices should be independently authenticated to join

the network and pre-configured with symmetric keys. When a network has high

security requirements, such as for military purposes, a hybrid approach can be used.

176

All devices should be authenticated to join the network, but in this case, an asym-

metric algorithm is used to distribute a symmetric key when a session is initiated.

During the session, this symmetric key is used to encrypt necessary information. If

the session lasts long, the keys can also be updated with a certain frequency using

an asymmetric algorithm. Due to the heavy computational costs, we suggest that

asymmetric algorithms should not be used for the entire session.

6.6.2 Michael: Message Integrity Code

In protecting data integrity, especially against modification attacks, one option is

to use Michael [23] to protect data corruption. Michael is a message integrity code

(MIC) for temporal key integrity protocol (TKIP) for IEEE 802.11i draft [41]. It has

specially been designed for preventing bit-flip attacks and a whole class of header

modification. It uses a 64-bit Michael key to hash an arbitrarily long message. The

result is a 64-bit Michael value, which is attached and sent together with the original

packet.

With Michael, nodes can detect modification attacks, but at the price of larger

packet size (including the Michael value). Besides, the nodes in the network also need

to know which Michael key is in use. If adversaries know the Michael key, they can

generate the Michael value after they modify a packet. Similar as in Section 6.6.1,

this comes to the question of key distribution [10].

6.6.3 Authentication algorithms

Although Ahoy is a discovery protocol that tends to share available resources as

much as possible and does not prefer authentication, it is still a good option to apply

authentication algorithms, if to protect data within a group of users is a security

goal. In reality, this also makes sense. If we assume that context information in

a network should only be shared by a specific group of devices, it is reasonable to

authenticate those devices before they join the group.

Typical authentication algorithms include message authentication code (MAC)

177

[57], username-password authentication, etc. Those algorithms have different com-

plexity and security levels, and can be applied based on different security require-

ments. For example, in a normal conference ad-hoc network, simple username-

password authentication scheme is probably sufficient.

After applying authentication algorithms, a pre-configuration file can be ex-

changed in a relatively safer environment. For example, such a pre-configuration file

can include the meta-information, such as information about hash functions, and

context information type standards. It can even include the keys for encryption or

the Michael algorithm. In this way, any device that is authenticated to join the

network has the necessary information to discover and share context information in

the network. Adversaries can hardly modify any information in the network, if they

lack the necessary information from the pre-configuration file.

6.6.4 Rule management

Encryption, Michael, and authentication are general approaches to enhance the

security, which can be applied to any protocol. One specific countermeasure for Ahoy

is rule management. As we introduced briefly in the previous sections, applying

specific rules can avoid or reduce the impact from attacks. We summarize and

address these polices as follows.

ABFs consistency check.

In the advertisement phase, adversaries can be detected by checking the consistency

of their ABFs. What to do after detection, depends on the application requirements.

For example, the node can broadcast the address of the adversary to the entire

network, or to remove the adversary as its neighbor. Broadcasting the address of

the adversary can lead to other problems that are related to trust. How reliable is

the detection of an adversary? Who can be trusted? This is another complicated

issue, which we will not cover in this thesis.

The following three rules can be used to check the consistency of ABFs.

• Number of zeros in ABFs. When all bits in all layers of the ABF are 0, no

information is hosted by or can be accessed from this node. This scenario is

178

very rare. There is an exceptional case of a new node that joins the network,

which does not have any context information. However, it is very unlikely that

the neighboring nodes also do not have context information. After a while,

there should therefore be at least some bits set to 1 in the lower layers of the

ABF. If we spot a node with only 0s’ in its ABF, and if it keeps this status

for some time, we can assume that the node is an adversary. A rule to check

whether all layers are 0 can be applied to detect probable adversaries.

• Number of ones in ABFs. When many bits are set to 1, there is a rela-

tively high probability of false positives. In Ahoy, we avoid large number of

false positives, by setting the ABF parameters w (width of the filter), b (the

number of hash functions in use) accordingly, based on the number of context

information in reach (related to d (depth of the filter), and x (the number of

context information that can be reached in certain hops away)), as discussed

in Chapter 4.

The exact value of x can not be known in advance. However, by studying

historical data or using other prediction algorithms, we can estimate it roughly.

The results of Chapter 4 also show that when the exact number of context

information types in the network is unknown or estimated, it might be even

better to set w at a slightly larger value than the optimal setting for the

estimated number of types. It will then not generate much more traffic, but

it can accommodate more context information, if necessary, in the future. If

w, b, and x are known, we can obtain the distribution of the number of bits

that are set to 1, which we do in Appendix B. We can thus calculate the

probability that the number of 1s’ is larger or smaller than a specific number

given that the node is not an adversary. This probability is very small when

a lot of 1s’ or little 1s’ are set. In that case it is more likely that the node is

an adversary.

With this information, users of Ahoy should decide how to deal with the sus-

pected adversaries. They can warn other neighbors by announcing this prob-

ability to other nodes in the network. They can also remove the suspected

adversary as their neighbor. However, there is a risk of removing a normal

node. This risk is higher when many nodes in a high density network are

evaluated, although one might argue that the removal of one neighbor in such

179

a case does not really matter. Also, this rule can only be effective if at least

some adversaries only add or remove 1s’ to the filter. If adversaries only add

(or remove) as many 1s’ as they remove (or add), i.e., if they modify the filter

without changing the number of bits set, they will have the same distribution

of 1s’ as normal nodes. In that case, this rule will not be effective.

• Duplication of the information in the lower layer. We duplicate local in-

formation in every lower layer of the ABF to reduce unnecessary transmissions

when one context information is added (refer to Chapter 3.3.3). Therefore, the

bits that are set to 1 in the higher layers should also be set to 1 in all lower

layers. If this is not the case, the node can be an adversary or a malfunctioning

node that cannot perform the duplication. Since the duplication is a rather

simple operation, the probability that a node cannot perform this operation

correctly is rather small. Nodes that detect such a mis-behavior node can

determine that it is an adversary with great probability.

Restricted update rates

To avoid that adversaries constantly modify advertisements or flooding advertise-

ments into the network, we can require nodes to wait for a small amount of time

before it can send out an advertisement.

The timer, advertisement-min-time, should be set to a small value, for instance,

1 second. The process of updating generally spreads very quickly within the d-hop

range. However, the updates should also be exchanged back and forth between

neighbors for several times when context information is removed from the filters

(an “advertisement loop”) due to adding context information has been solved by

duplicating information in the lower layer before broadcasting; see Chapter 3 for

details. During the short waiting period, the node can collect the updates from

neighbors and process them at once. This delay helps to reduce some traffic that is

generated by too frequent updates.

Nodes should follow the following three actions when they send out an adver-

tisement:

• Action 1: Whenever an advertisement is sent, the timer advertisement-min-time

is set and starts to count down.

180

• Action 2: When a new ABF is computed, the timer advertisement-min-time

is checked. If advertisement-min-time = 0, the new ABF can be sent out,

and the timer advertisement-min-time is set again. If not, the new ABF is

discarded.

• Action 3: Every time when the timer advertisement-min-time counts to 0,

a new ABF is generated. The new ABF is sent out only when it is different

from the last broadcasted ABF.

This rule may slow down the updating process slightly and can influence the

discovery efficiency, especially in highly mobile environments. When changes in

context information are not updated on time, more false positives and false negatives

may appear. It depends on the setting of advertisement-min-time. A large value

of advertisement-min-time may have a negative impact on the discovery efficiency.

However, our purpose to set a timer is also to enable the nodes to complete the

update process. We therefore suggest that the advertisement-min-time should

depend on the time that it takes to complete the update process, which in general

will be a short time.

Restrict the query and reply rate

Similar to the previous rule, we can restrict the query and reply rate to minimize

the impact of the flooding by queries and replies from adversaries. We can use

query-min-time and reply-min-time to count the timer. The following actions

should be followed:

• Action 1: Whenever a query/reply is sent, the timer query-min-time/reply-

min-time is set and starts to count down.

• Action 2: When a new query/reply is generated, the timer query-min-time/

reply-min-time is checked. If it is 0, the new generated query/reply can be

sent out, and the timer is set query-min-time/reply-min-time again. If not,

the new query/reply is hold and stored.

• Action 3: Every time when the timer query-min-time/reply-min-time counts

to 0, nodes check the queued queries/replies. The first one in the queue will

be sent out and the timer is set again.

181

This cannot eliminate the threats, but can reduce the danger of jamming the

(entire) network. Both timers should not be set to a large value. Otherwise, it

might lead to a long queue of queries/replies waiting for being sent out. This might

seriously delay the discovery process. However, the timers should also be set large

enough to minimize the effect from flooding attacks. The decision should be made

based on the detailed network scenarios.

Meanwhile, this rule, as well as the previous rule, can lead to slightly larger

discovery times and lower discovery efficiencies, especially in high mobility and high

discovery frequency environments. However, we still recommend this rule in general,

considering the positive contributions compared to the small drawbacks.

Withdraw packets reusing the same advertisement/query/reply ID.

To avoid replaying and flooding attacks, every advertisement, query, and reply mes-

sage should have an unique identification. Especially, for each reply it should be

clear to which destination it is sent, to which query it responds and from which con-

text source it is sent. Nodes should drop a packet with the same ID as the previous

packet. We have used GID to identify advertisements, QID to identify queries. We

also suggested to use RID to identify replies in this Chapter.

In Section 3.4, we have defined the rule when a query packet is received that a

query with the same QID and the same originator is discarded. Similarly, we apply

the following rule when a advertisement packet is received:

• Step 1: Whenever one advertisement packet is received, the node checks the

GID and the sender’s address of the advertisement.

• Step 2: If the same sender has sent a packet with the same ID, the packet is

discarded. Otherwise, the corresponding steps will be taken based on different

packet types.

The following steps are performed when a reply is received:

• Step 1: Whenever one reply packet is received, the RID, QID, and the

sender’s address is checked.

• Step 2: If the same sender has send a packet with the same RID, the packet

is discarded.

182

• Step 3: If the same sender of reply has a reply with the same QID, but with

the different RID, the packet is discarded.

• Step 4: Otherwise, the reply is recorded by the node and forwarded.

This rule does not have any side effect, but can well avoid adversaries replaying

the same packets to the network.

The hop-count of a query should never be larger than maximum hop

counter d.

To minimize the impact of a modification of the hop counter of the query packet,

the hop-count of a query should always be less than or equal to the maximum hop

counter d.

The following steps should be taken to perform this rule:

• Step 1: Whenever a query is scheduled to be sent out, nodes check the current

value of hop-count.

• Step 2: If the value is larger than d, it is set to d. Otherwise, no action is

taken.

This rule can not eliminate the threats, but can avoid that adversaries discover

information in the network more than d hops away. If there is only one adversary,

the infected query can at most travel 2d hops away from the query originator, when

the adversary is the dth hop neighbor of the originator and changed the value of

hop-count from 0 to d. This happens when the adversary is located d hops away

from the query originator. If multiple adversaries coordinate with each other and

keep on modifying the hop-count to d, the query can be forwarded throughout the

entire network in the worst case.

Since the rule can help to reduce the effects from this type of attack, and since

it is not difficult to implement, we recommend to apply this rule.

183

6.7 Summary

In this chapter, we studied the vulnerability of Ahoy, the proactive and reactive

protocols against the eavesdropping, modification, packet dropping, replaying, and

flooding attacks towards exchanged discovery packets. In general, the three protocols

are more or less equally vulnerable towards those attacks. For Ahoy, there is some

benefit of using ABFs that contents are protected by hashing, while the exchanged

contents of the other two protocols are directly readable by adversaries. On the other

hand, a small modification in an ABF may lead to more changes in the contents

than a similar modification in the original information. With respect to the extra

traffic generated by attacks, Ahoy has the advantages of aggregating information

from neighbors into one ABF and selective queries, but also has the disadvantage

of “advertisement loops” to remove information.

The existing countermeasures, such as encryption, Michael, authentication can

be equally applied to all three protocols. These countermeasures do not generate

extra burdens for Ahoy. However, as usual, security comes with price. Applying

countermeasures requires more computational power from nodes and generates extra

traffic load.

Rules can be applied to improve the vulnerability. Some of the rules can be

applied in all three protocols, such as to restrict update rates, to withdraw duplicated

packets, and to restrict query range. But some of them which are based on the

characteristics of ABFs, e.g., to check the consistency of ABFs, are only valid for

Ahoy, and not for the other two discovery protocols.

184

Chapter 7

Proof-of-Concept Implementation

In the previous chapters, we have proposed and designed a novel context discovery

protocol, Ahoy. We have evaluated the performance of Ahoy in terms of network

traffic in both static and dynamic networks using analytical models and simulations.

Now we are interested in how Ahoy performs in practice. In this chapter, we im-

plement a prototype of Ahoy. We test the prototype in virtual networks to observe

whether Ahoy performs as expected. We assess how much traffic Ahoy generates as

a portion of the total traffic in the network, and we evaluate some of our design

choices.

This chapter is written in close cooperation with Robbert Haarman. As part

of his master assignment [31], Haarman has implemented Ahoy on top of UDP

and IPV6 in Ruby [70]. Ruby is a simple and effective open source programming

language, which can well support our needs to establish an interaction between Ahoy

and the underlying protocol UDP and IPv6. Haarman has tested the prototype on

UNIX-like (GNU/Linux) platforms. A virtual ad-hoc network consisting of virtual

computers was set up to test the performance of the prototype, using User Mode

Linux [79]. Each virtual machine runs a Unix-like platform (Debian GNU/Linux

4.0 (etch) [20]). The routing between virtual machines has been performed by using

the OLSR [15] routing protocol.

In Section 7.1, we introduce the implementation choices for the prototype. In

Section 7.2, we describe the message types and their formats. Section 7.3 gives an

overview of the functional implementation of the prototype. Section 7.4 presents test

results. Section 7.5 discusses the lessens learned from the prototype implementation.

The work described in this chapter has been published in [32].

185

186

7.1 Implementation Choices

We have defined the Ahoy protocol in detail in Chapter 3. There are three funda-

mental phases in Ahoy: context exchange, context query, and context maintenance.

Context information types are hashed into attenuated Bloom filters (ABFs) and

broadcasted to the neighbors. Nodes that have received ABFs from their neighbors,

aggregate those ABFs, generate a new ABF, and broadcast it. In this way, one

context information type can be propagated d hops away. Whenever a node looks

for some context information, a query is generated. Nodes first check their local

context information types. If there is no match, they check the stored ABFs from

their neighbors. If a match is found, the node sends the query to the corresponding

neighbor. In doing so, the query is propagated to the nodes which probably contain

the requested information. The propagation of queries are stopped either when the

requested information is found or when the query has been forwarded d hops away

from the query originator. Whenever the requested context source is found, a reply

is generated and sent back to the query originator. We implement the prototype

based on this protocol definition.

In Chapter 3, we have discussed several design choices, which should be deter-

mined before implementation based on different network requirements and settings.

Moreover, we encounter a couple of other options regarding the implementation,

such as that of the underlying protocol. In this section, we first determine the

choices for the prototype implementation in detail, according to our implementation

requirements.

7.1.1 Context Information Type Format

In principle, the original context information types can be specified in any format.

The general assumption is however that every type of context information should be

uniquely known by a specific name, which all nodes are aware of. In the prototype,

we describe context information types in a simple way by means of text strings.

Each context information type is generated randomly so that it is unique over the

network.

187

7.1.2 Context Duplication

In Section 3.3.3, we have discussed the advertisement loop, which occurs when in-

formation is added to the ABF, layer by layer. We have proposed two methods to

solve this problem: applying an advertisement timer to delay frequent subsequent

advertisements and context duplication. Context duplication can well avoid adver-

tisement loops due to adding context information types. Applying a timer can only

reduce the number of advertisement loops, depending on the settings of the timer.

However, it provides the opportunity to observe the influence of advertisement loops.

Because this is one of our goals for the prototype, we choose the first option to set

an advertisement timer.

7.1.3 Query Format

Queries can be sent either in the original or BF format, as introduced in Section 3.4.2.

Both formats have pros and cons. In the prototype, the original information is

described in textual format which is not a space-consuming format. We choose to

query in the original format in the prototype, so that we can ensure the discovered

information is exactly the requested one. When we use BF format, there is a chance

we obtain a false answer when multiple information is hashed into the same code.

Here, we prefer to consume slightly more network traffic to query in textual format,

instead of spending much effort to set a connection with wrong context sources.

7.1.4 Query Method

Queries can be sent in parallel to all possible matches at once or sequentially, one at

a time, as was discussed in Section 3.4.2. Using parallel querying we are able to find

all the possible context sources, while with the sequential querying only one source

is found. The decision basically depends on the network scenario. In the prototype,

we implement the parallel querying method.

188

7.1.5 Route Recording

We discussed three route recording options in Section 3.4.2. Here, we assume the

availability of an underlying routing protocol. We use this protocol to deliver reply

messages.

7.1.6 Means of Query Propagation

Ahoy requires a network that at least supports both broadcast and unicast. We

broadcast advertisements to all neighbors and unicast replies to one specific neigh-

bor. Queries, however, can be sent by broadcast or unicast. When a query is

broadcasted, all neighbors receive it. Nodes need to spend extra effort to process

the query, and to determine whether they have to take further actions. When a

query is unicasted, only one specific neighbor receives it. However, using parallel

querying, the query needs to be unicasted several times when multiple neighbors

match the query.

The choice between broadcasting and unicasting queries depends on the network

scenario. In wireless networks, a message is probably received by several neighbors,

even if the massage was not for them. In this respect, broadcast is a more efficient

way to propagate queries. Further, it depends on which query method is chosen.

Unicast is suitable for the sequential query method, since messages are only sent to

one node at a time. Broadcast is suitable for the parallel method, since more nodes

need to act on the query at once. Finally, unicast provides the possibility to define

different propagation scopes of query messages for different neighbors, depending on

the number of hops in which a match is expected to be found.

In the implementation, we use the parameter broadcast-queries to set the method

to propagate query messages. If it is set to true, queries are sent by broadcast. If it

is set to false, queries are sent by unicast. By default, it is set to false.

7.1.7 Underlying Protocols Support

Ahoy has been designed independently from the underlying protocols. It is suitable

to serve context discovery in different layers. It can reside on top of the transport

layer, e.g., Transmission Control Protocol (TCP) or User Datagram Protocol (UDP),

189

on top of the network layer, e.g., Internet protocol (IP), or on top of the link layer,

directly above Media Access Control (MAC) sub-layer. Because the operation of

Ahoy does not necessarily need any support from the transport and network layers, it

is most suitable to reside on top of MAC sub-layer, regarding the system complexity.

However, the existing programming languages, e.g., Ruby, C, and Java, are lacking

ready interfaces to MAC layer, but they have interfaces to TCP/UDP. For ease of

implementation, we choose to reside Ahoy on top of UDP. UDP is a very simple

protocol which only has 8 bytes of header. In Ahoy, advertisements and keep-alive

messages need to be sent to all neighbors for update and maintenance. The most

effective way to do it is via broadcast. Moreover, queries need to be sent to specific

neighbors to perform directional querying. This can be done via unicast or broadcast

(see Section 7.1.6). Since UDP supports both broadcast and unicast, it is an ideal

platform to build our prototype on.

Further, UDP can be layered on top of both IPv4 and IPv6. With the explosive

growth of the internet, IPv4 addresses are expected to get exhausted in the near

future. IPv6 is the successor of IPv4, and is introduced to resolve the risk of address

exhaustion. Therefore, we use IPv6 in the Ahoy prototype.

7.2 Message Type and Message Format

There are five types of messages in Ahoy: advertisements, queries, replies, keep-

alives, and update requests, as introduced in Section 3.2. In the following part of

this section, we are going to introduce their types and formats in detail [31].

7.2.1 Address

Before starting introducing the messages, we first define the address field, which is

used in several types of messages, i.e., queries and replies. The address field can be

defined as follows.

This field starts with an 8-bit size sub-field to indicate the size of the address

field in bytes. In total, the size of the address field is 20 bytes if we use IPv6. As

a result, it is set to 20. 8 bits are used to specify the type of the address, IPv6 or

IPv4. For IPv6, it is set to 1. The field port declares the port number used by the

190

context information, if necessary. It is a 16-bit unsigned integer. The last 128 bits

are used to store the IP addresses. Figure 7.1 shows the packet format of an IPv6

address.

 0 7 15 23 31
0 Size Type Port
32
64
96

128

IPv6 address

Figure 7.1: Packet format of an IPv6 address.

7.2.2 Advertisement

The advertisement message format is shown in Figure 7.2. The packet contains 8 bits

of message type. For advertisement packets, the default type is 1. GID is a 32-bit

unsigned integer to indicate the freshness of the information, see Section 3.5. We use

8 bits and 16 bits to store the information for ABFs’ depth and width, respectively.

As our basic assumption for Ahoy, all the nodes over the entire network should agree

on the same depth and width for ABFs in use. By default, the depth is set to 4 and

the width is set to 128 bits. The remaining part of the advertisement contains the

broadcasted ABF. The size of the filter depends on the parameter depth (d) and

width (w). It can be calculated by multiplying d and w.

 0 7 15 23 31
0 Type Generation-id
32 Generation-id (cont’d) Depth Width
64

Filter :::

Figure 7.2: Advertisement packet format.

191

7.2.3 Query

Figure 7.3 shows the message format of a query. The 8-bit message type is set to 2

for query messages. We use a 32-bit unsigned integer, named query-id, to identify

a query. 8 bits are reserved to indicate time-to-live, which represents the maximum

number of hops that the query can still be propagated. The field name-length

indicates the number of bytes needed to store the original context information,

followed with a field name to store the entire query. Finally, the address of the

query originator is included. According to Section 7.2.1, we need 20 bytes.

 0 7 15 23 31
0 Type Query-id
32 Query-id (cont’d) Time-to-live Name-length
64

Name:::

Sender-address:::

 Figure 7.3: Query packet format.

7.2.4 Reply

The reply message format can be depicted in Figure 7.4. The 8-bit message type is

set to 3 for reply messages. A reply message contains the 32-bit query-id it responds

to. As introduced in Section 7.2.1, 20 bytes is used for the address of the replying

node.

 0 7 15 23 31
0 Type Query-id

32 Query-id (cont’d) Reply address
64

Reply address (cont’d):::

Figure 7.4: Reply packet format.

192

7.2.5 Keep-alive

The keep-alive message format is defined as in Figure 7.5. There are only two fields

defined in the message: type and GID. The type for keep-alive messages is 4. GID

is a 32-bit unsigned integer to indicate the freshness of the advertisement.

 0 7 15 23 31
0 Type Generation-id
32 Generation-id (cont’d)

Figure 7.5: Keep-alive packet format.

7.2.6 Update request

The format is defined as follows in Figure 7.6. Only one field type is defined. For

update request, it is set to 5.

 0 7
0 Type

Figure 7.6: Update request packet format.

7.3 Functional Description

7.3.1 Event and State Variables

In this section, Ahoy is described in events and actions in response to these events.

Four types of events are defined [31]:

• User actions: users can announce or revoke context type information they

have, or query some information they are looking for.

• Neighboring nodes: neighbors can send advertisements, queries, replies,

keep-alives, and update requests to the node arriving through a UDP port.

193

• Timeouts: several time outs have been defined for various purposes: mini-

mum advertisement delay, keep-alive delay, query timeout, query cache cleanup

timer, and service list cleanup timer.

• Exceptions: it can be caused by users sending a break to terminate the

program, the operating systems sending a terminate signal, or out of memory,

etc.

In the implementation, actions are triggered by different events. Meanwhile, five

state variables (data structures) are maintained by Ahoy daemons [31]:

Query Cache The query cache is used for detecting (and subsequently discarding)

duplicate queries. For each query that is received, it contains the query ID,

the source address of the query, and a time stamp. The query cache is cleaned

up at regular intervals by purging old entries. This time interval is counted

by a query cache cleanup timer.

Neighbor List The neighbor list contains information about the direct (currently

known) neighbors of the node running the Ahoy daemon. For every neighbor,

it contains the neighbor’s address, a time stamp, and the latest advertisement

(GID and ABFs) received from that neighbor.

Local Services The local services list contains the context information types an-

nounced by users. For each context information type, it contains the name,

the address, and a time stamp. The local services list is cleaned regularly by

removing old entries. We apply a service list cleanup timer to determine the

time for cleaning up.

Latest Advertisement The Ahoy daemon keeps the information sent out in the

latest advertisement. When the neighbor list or the local services change, a

new BF is computed, but these only need to be broadcast if they are different

from the filters in the latest advertisement. Keeping a copy of the information

sent out in the latest advertisement allows the daemon to decide whether it

needs to send out a new advertisement or not.

Active Queries The daemon keeps a list of active queries, i.e., queries that have

been initiated by users and that the daemon is currently awaiting responses

194

for. For each such query, the list contains the query id and the socket on which

the user program is listening for responses.

The following part of the section, we address the functional flow in detail [31].

7.3.2 Initialization

After configuring the IP address and the port, a UDP socket is opened for sending

and receiving Ahoy messages. A node broadcasts an update request through the

socket and enters the IDLE state. It waits for the following events to occur to

precede further actions [31].

• An advertisement is received from another Ahoy node (Section 7.3.3).

• A query is received from another Ahoy node (Section 7.3.4).

• A response is received from another Ahoy node (Section 7.3.5).

• A keep-alive message is received from another Ahoy node (Section 7.3.6).

• An update-request message is received from another Ahoy node (Section 7.3.7).

• An advertisement is received from a user (Section 7.3.8).

• A revocation is received from a user (Section 7.3.9).

• A query is received from a user (Section 7.3.10).

• The keep-alive timer expires (Section 7.3.11).

• The advertisement timer expires (Section 7.3.12).

• The query cache cleanup timer expires (Section 7.3.13).

• The service list cleanup timer expires (Section 7.3.14).

• A query timer expires (Section7.3.15).

• A signal is received from the operating system, causing the daemon to clean

up and exit (Section 7.3.16).

Nodes handle these events as described below. When a received message does

not fit in one of the above categories, we emit a warning and discard the message.

195

7.3.3 Ahoy Advertisements

When an advertisement is received from another node, the following steps are taken:

• The current time, the content of the advertisement, and the IP address of the

neighbor from which it was received are recorded in the Neighbor List. The

new information overwrites any previous entry for the same address.

• A new ABF is computed based on the new information and a new advertise-

ment with this ABF is created.

• If the new advertisement differs from the latest advertisement, it is broadcasted

to all neighbors and becomes the new latest advertisement.

7.3.4 Ahoy Queries

When a query is received from another node, the following actions are performed:

• The ID and source address of the query are looked up in the Query Cache.

If a match is found (meaning the query has been seen before), only the time

stamp in the cache is updated, and no further processing is performed, and

the query is discarded.

• The current time, and the ID and the source address of the query are inserted

into the Query Cache.

• The queried context information type is looked up in the Local Services. For

any matching services, a reply message is sent to the query’s source address.

• If the query’s time-to-live is greater than 1, it is propagated. Propagation

works as follows:

- A new query message is created, with its ID, context information type,

and source address equal to those of the received query, and a time-to-live

of one lower than the received value.

196

- The Neighbor List is cleaned up by removing neighbors from which no ad-

vertisement or keep-alive message has been received in the last neighbor-timeout

seconds. If any neighbors were removed, a new advertisement is computed

based on the remaining service information. If this advertisement differs

from the Latest Advertisement, it is broadcast to neighboring nodes, be-

comes the new Latest Advertisement, and the keep-alive timer is reset.

- After the Neighbor List has been cleaned, a look up is performed against

it, returning all neighbors who have matches for the service name in their

Bloom filters, within a number of hops less than or equal to the time-to-

live of the new query.

- The new query is sent to all these neighbors, if any. If the parameter

broadcast-queries is false, the query is unicast to each individual ad-

dress. Otherwise, a single broadcast message is sent if there are any

knowledgeable neighbors. No query message is sent if the look up in the

previous item did not return any matches.

7.3.5 Ahoy Responses

When a response is received from another node, it is processed as follows:

• The ID of the response is looked up in the Active Queries. If no match is

found, no further processing is done.

• If a match is found, the address contained in the response is sent to the user

program waiting for it.

7.3.6 Keep-Alive Messages

When a keep-alive message is received from another node, it takes the following

actions:

• The GID is extracted from the keep-alive message.

197

• The node looks up the neighbor who sent the keep-alive message in the Neigh-

bor List.

• If the neighbor is found in the list, and the GID recorded in the entry in the

Neighbor List matches that of the message, the timestamp for the entry is

updated.

• If the neighbor is not found in the list, or if the recorded GID does not match

the one contained in the message, an update-request is sent to the neighbor.

7.3.7 Update-Request Messages

If an update-request message is received, the node sends its latest advertisement to

the neighbor that sends the update-request.

7.3.8 User Advertisements

Users can announce context information types on Ahoy by specifying the name of the

context information type, the IP address, and the port number. User advertisements

are handled by taking the following steps:

• A user enters the context information type, the port number, and the IP

address in the Local Services. If an entry with the same type and address

already exists, the existing entry is overwritten by updating the time stamp.

• Based on the new information, a new ABF is computed.

• If the new ABF differs from those sent in the Latest Advertisement, a new

advertisement with the updated ABF is sent out, and recorded as the new

Latest Advertisement. The keep-alive timer is rest.

Note that, local services are automatically removed after local-service-timeout sec-

ond. Users have to re-announce their services periodically to keep them available in

the network.

198

7.3.9 User Revocations

Users can revoke advertisements by specifying the context information type, the IP

address, and port number of the advertisement to be revoked. Ahoy performs the

following steps to revoke advertisements:

• A user looks up the context information type and the address in the Local

Services.

• If no entry is found, no further processing is done.

• If an entry is found, it is removed.

• When the last entry for the given context information type removes, the in-

formation type is no longer available. A new ABF is computed. If the new

advertisement with the new ABF differs from the Latest Advertisement, it

becomes the new Latest Advertisement. The new advertisement is distributed

to all neighbors. The keep-alive timer is reset.

7.3.10 User Queries

Users can query context information type by performing the following steps:

• A user enters a context information type to query.

• An ID is generated for the query and recorded into the Active Query, along

with information about the user program that responses are to be sent to.

• Generate a query message containing the ID, the context information type,

the IP address, and a time-to-live field with a value equal to depth.

• Search the Neighbor List for neighbors that have matches for the service name

in their Latest Advertisements.

• Send the query to any such neighbors, using uni-cast if broadcast-queries is

false, using broadcast otherwise.

• Set a timeout of query-timeout seconds. When the timeout expires, the query

information is removed from Active Queries.

199

7.3.11 The Keep-Alive Timer

The keep-alive timer is used to schedule the next keep-alive message. Whenever an

advertisement or a keep-alive message is sent, the keep-alive timer is set to

keep-alive-time+

(
keep-alive-time · (rand− 1

2
) · keep-alive-jitter

100%

)
.

The parameter rand is a random value between 0 and 1, while keep-alive-jitter

is used to vary keep-alive period with a small randomness to avoid collisions. By

default, keep-alive-time is 15 second and keep-alive-jitter is 25%. When the timer

is expires, a keep-alive message is broadcasted to all neighbors.

Finally, when the keep-alive timer of a neighbor expires, the Neighbor List is

also cleaned up by removing neighbors from which no advertisement or keep-alive

messages have been received in the last neighbor-timeout seconds. A new ABF is

generated based on information available from the remaining neighbors and Local

Services. If the computed advertisement differs from the Latest Advertisement, it

becomes the new Latest Advertisement and is broadcasted to neighboring nodes.

The keep-alive timer is reset [31].

7.3.12 The Advertisement Timer

The advertisement timer is used to prevent frequent updates as we introduced

in Section 7.1.2. The advertisement timer is set whenever a new advertisement

has been generated, but the last broadcasted advertisement was sent less than

advertisement-min-time seconds ago. The new advertisement cannot be sent im-

mediately, and thus is scheduled to be sent at a later time.

When the advertisement timer expires, an advertisement computed from the

latest available information (including changes that occurred after the timer was

set) is sent. The new advertisement then becomes the new Latest Advertisement.

The keep-alive timer is reset.

7.3.13 The Query Cache Cleanup Timer

The query cache cleanup timer is used to periodically clean up the Query Cache.

It is set to query-cache-timeout seconds. It is first set when Ahoy is started, and

200

reset each time it expires. Whenever it expires, the Query Cache is cleaned up

by discarding from the cache any entries that are older than query-cache-timeout

seconds.

7.3.14 The Service List Cleanup Timer

The service list clean-up timer is used to clean up the Local Services list. It is set

to local-service-timeout/10 seconds when Ahoy starts, as well as each time it ex-

pires. When it expires, any entry which is older than local-service-timeout seconds

in the list of Local Services is removed. Removing an entry causes a new advertise-

ment is generated. If the advertisement differs from the Latest Advertisement, it is

broadcasted to neighbors. The keep-alive timer is reset.

7.3.15 Query Timeouts

Query timeouts are used to count the life time of a query. If no requested con-

text information type has been found, there is no response sent back to the query

originator to announce that. Whenever a query is initiated by a user, a timeout

of query-timeout seconds is set. When the timeout expires, the query is discarded.

Any responses that come in after such time will be ignored.

7.3.16 Shutdown

When the Ahoy daemon exits, it deletes the local socket it created for communicating

with user programs.

7.4 Testing and Results

7.4.1 Test Goals and Settings

Tests have been done to validate the protocol. The tests are set up to help us to

pursue the following objectives:

201

• To validate whether the prototype works as expected and whether all the

messages are transmitted at the right time in a right order.

• To analyze the traffic (bytes per second) generated by Ahoy as fraction of the

total traffic (including UDP, IPv6, and Ethernet).

• To observe the effect of advertisement loop when context is not duplicated in

lower layers of ABFs.

Due to the different purposes, the traffic analyzed in the prototype is different

with the traffic analyzed in the analytical and simulation models in Chapter 4 and

5. First of all, we implement the keep-alive mechanism here. In the analytical and

simulation models, keep-alive messages are not taken into account, due to the focus

on the performance study of updates with constant frequencies. Secondly, in contrast

to the analytical and simulation models, we did not implement context duplication in

the prototype, because we wanted to observe the influence of the advertisement loop

in real world tests. There are therefore more packets transmitted in the prototype

than in the models due to advertisement loops. Thirdly, the Ahoy query traffic in the

prototype includes the real queries, false positive queries, keep-alive messages, and

reply messages. In the analytical and simulation models, we aim to minimize the

false positive probabilities and count only false positive queries. With the optimal

settings obtained from Chapter 4, false positive queries can be only a (very) small

part of the total Ahoy query traffic in the prototype. Therefore, we cannot directly

compare the traffic from the prototype with the results from the analytical and

simulation models.

In the following tests, we use TCPDUMP [76] to collect the traffic data. The

Ahoy parameters and their settings are listed in Table 7.1.

7.4.2 Test scenarios

Tests have been done for both a 5- and a 13-node scenario, respectively. For each

scenario, three different network topologies are examined: a network with full con-

nectivity, a regular grid structured network, and a network with dynamic connec-

tivity.

202

Table 7.1: Parameter Settings.

Parameter Value Parameter Value

announcement-min-time 5 sec broadcast-queries true
depth 4 number of hash functions 3
local-address /tmp/ahoy/socket port 5000
keep-alive-time 15 keep-alive-jitter 25
local-service-timeout 300 sec query-timeout 10 sec
query-cache-timeout 60 sec width 128 bits

• Network with full connectivity: every node can connect to any other node

in the network directly. Figure 7.7(a) shows an example of a fully connected

five-node network. Please note that this figure does not depict the geographic

topology of the network. As long as every node can reach the others directly,

it fits the requirement of such a network. In the remainder of the section, we

name this scenario as the “Full” scenario.

• Regular grid structured network: as described in Chapter 4. Figure 7.7(b)

and Figure 7.7(c) present the abstract network topologies at the connection

level for networks with 5 and 13 nodes, respectively. In the remainder of the

section, we name this scenario as the “Grid” scenario.

• Network with dynamic connectivity: nodes periodically and randomly change

connections between each other. Every 30 seconds, the connections between

nodes are randomly generated. The algorithm is as follows: all connections

between each pair of nodes are initially enabled. Then, each node randomly

decides whether or not to block communication to another node for the next

30 seconds. Each connection has 50% probability to be blocked. Since the

network topology is essentially randomly determined every 30 seconds, the

number of connections is not known in advance. There is no guarantee that

all nodes are connected for each random topology. There is also no guarantee

that all links are bi-directional. In the remainder of the section, we name this

scenario as the “Dynamic” scenario.

203

(a) Full connectivity (5-node). (b) Grid structure (5-node).

(c) Grid structure (13-node).

Figure 7.7: Examples of network structures [31].

204

For each topology of every scenario, three different sets of experiments have been

performed, as follows.

• Experiment “Idle”: to observe the performance of Ahoy in a stable state.

In the experiments, Ahoy is idle and no context distribution or discovery is

performed. Nodes only exchange keep-alive messages, update requests, and

advertisements as requested. Note that update requests and advertisements

are only sent when the network topology changes.

• Experiment “Advertise-revoke”: to test the performance of Ahoy advertise-

ments. In those experiments, one node advertises a context information type,

and revokes it after 60 seconds, and advertises it again after 60 seconds, and

so on.

• Experiment “Query”: to evaluate the discovery ability of Ahoy. One node

advertises a context information type, and another node is requested to query

the context information type every 20 seconds.

7.4.3 Test results

All the tests run for 300 seconds to collect enough data for calculating average net-

work traffic (bytes per second). For each of the test setups, we collect and analyze

the network traffic generated by Ahoy and the total network traffic (byte counts in-

clude UDP, IPv6, and Ethernet headers). Virtually all network traffic not generated

by Ahoy is generated by OLSR (the routing protocol used), with a negligible portion

of the traffic being ICMPv6 [16] control messages [31]. Figures are only plotted to

visualize traffic generated by Ahoy. We present in detail the experiments done for

13-node networks. The experiments for 5-node networks present similar results to

corresponding experiments in 13 nodes networks. Please refer to [31] for the detailed

results of 5-node networks.

Full Connectivity

Figure 7.8 shows the test results for a 13-node network with full connectivity. Fig-

ure 7.8(a) shows the network traffic generated when Ahoy is idle. In this experiment,

205

there is no change in the network topology. Only a small amount of traffic is gen-

erated (60 bytes per second in average). Since there are only keep-alive messages

generated in the network, there is no large peak generated in Figure 7.8(a). Fig-

ure 7.8(b) shows the case where information is periodically advertised and revoked.

The figure show that every 60 seconds there is a peak of Ahoy traffic, which is gener-

ated due to broadcast ABFs for updating changes. Figure 7.8(c) shows the scenario

where context discovery is performed. In the figure, there are very clear peaks of

Ahoy traffic every 20 seconds, which correspond to the query messages.

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(a) Idle

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(b) Advertise-revoke

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(c) Query

Figure 7.8: Traffic generated by a 13-node network with full connectivity [31].

206

Grid structure

Figure 7.9 for grid structures share the same properties with the ones for full con-

nectivity structures (Figure 7.8). When Ahoy is idle, only light-weighted keep-alive

messages are transmitted in the network. When information is periodically adver-

tised and revoked, the same peaks appear every 60 seconds in the figure. High peaks

are generated every 20 seconds due the queries in the scenario of context discovery.

Compared to Figure 7.8 from the “full” scenario, both scenarios have the similar

pattern when Ahoy is idle. In Experiment “advertisement-revoke”, more traffic is

generated every 60 seconds. That is because more updates are needed in the “grid”

scenario, due to “advertisement loops” generated when information is added or re-

moved in the network. This effect is less visible in the “full” scenario, when every

node can reach each other within one hop. On the other hand, more traffic is gener-

ated in the “grid” scenario than the “full” scenario, in Experiment “Query”. Since

we apply parallel query methods here, in the “full” scenario, all nodes are visited

by the query, while only some of nodes are visited in the “grid” scenario.

Dynamic Connectivity

The network topologies change in every 30 seconds. When the connectivity between

nodes changes, network traffic is generated to propagate the changes in the network.

Figure 7.10 demonstrates the network traffic generated by Ahoy. Figure 7.10(a)

shows the case when Ahoy is idle. Unlike the static networks in the previous two

scenarios, more peaks appear to reflect the change of topologies. Connectivity be-

tween nodes changes every 30 seconds. However, the changes take longer time to

propagate to the nodes in range. Therefore, the peaks are not only concentrated

on the points when changes happen, but spread further. Figure 7.10(b) presents

the case when information is advertised and revoked periodically. It is clear that

both the topology changes and queries contribute to the peaks in the figure. Similar

effects are confirmed in Figure 7.10(c). Traffic generated by the change of topologies

leads to more frequent and higher peaks than in the case of static networks.

207

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(a) Idle

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(b) Advertise-revoke

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(c) Query

Figure 7.9: Traffic generated by a 13-node network with grid connectivity [31].

Summary

Figure 7.8, 7.9, and 7.10 demonstrate the expected behavior of Ahoy. The prototype

performs as expected in all three experiments (idle, advertise-revoke, and query) of

three cases (full, grid, and dynamic). Table 7.2 shows the average traffic gener-

ated by Ahoy (per node and the total Ahoy traffic) and the total traffic (including

Ahoy, OLSR, and ICMPv6 traffic) in bytes per second for both 5-node and 13-node

networks. We can make the following 3 groups of observation from the results:

1. Ahoy performs consistently.

1.1 Nodes can discover and locate the requested information using Ahoy. In

208

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(a) Idle

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(b) Advertise-revoke

 0

 360

 720

 1080

 1440

 1800

 0 60 120 180 240 300

tr
af

fic
 (

by
te

/s
)

time (s)

Ahoy traffic

(c) Query

Figure 7.10: Traffic generated by a 13-node network with dynamic connectivity
[31].

“Query” experiments, one node can successfully find an available con-

text information type which is located in another node. This indicates

that Ahoy properly advertises existing information types in the network

and that queries are forwarded to the nodes which contain the requested

information.

1.2 When there is no change in the availability and location of context infor-

mation, and if the network topology does not change, Ahoy only produces

keep-alive messages. In that case, the Ahoy traffic per node should re-

main the same, independently of node density. This has been shown in

209

Table 7.2: Test results (unit for network traffic: bytes per second).

Idle Advertise-revoke Query
Ahoy Traffic Total

Traffic
Ahoy Traffic Total

Traffic
Ahoy Traffic Total

Trafficper
node

total
per
node

total
per
node

total

5
nodes

Full 5 23 402 10 50 412 10 52 437
Grid 5 23 337 10 51 337 12 57 406
Dynamic 7 36 510 10 49 480 14 70 512

13
nodes

Full 5 60 1809 6 81 1511 11 144 1756
Grid 5 61 1436 9 117 1535 8 99 1560
Dynamic 11 145 2938 16 204 2945 17 226 3017

Experiment “Idle”. For both the “full connectivity” and “grid structure”

scenarios, Ahoy traffic per node is 5 bytes per second. For both topologies,

Ahoy traffic increases during the “Advertise-revoke” experiment. This re-

sult is also expected because in that experiment extra advertisements are

needed to propagate updates through the network. For example, in the

5-node network with full connectivity, every node generates 10 bytes per

second on average during the “Advertise-revoke” experiment.

1.3 More traffic is generated when the network is dynamic, because extra

advertisements are sent due to changes in topology. For example, in the

13 nodes “Idle” scenario, 60 bytes per second and 61 bytes per second

are generated in the “full connectivity” and “grid structure” topologies,

respectively, while 145 bytes per second are generated in the “dynamic

connectivity” network. Among those 145 bytes, 85 bytes are generated

due to changing connectivity. When information is advertised and re-

voked periodically, 125 out of 204 bytes per second are generated due to

updates. When querying is performed, 99 out of 226 bytes per second

are generated due to updates and replies.

2. Ahoy generates small amounts of traffic compared to the total traffic.

In Table 7.2, the “total traffic” refers to the sum of the traffic generated by

Ahoy, OLSR, and ICMPv6. In general, we can observe that Ahoy generates a

small portion of the total traffic. For example, among the above experiments,

210

the maximum fraction is 16.9% in Experiment “advertise-revoke” of the 5-

node grid scenario, and the minimum fraction is 3.9% in Experiment “idle”

of the 13-node dynamic scenario. In fact, with more nodes involved in the

network, the Ahoy traffic generated per node, mostly remains the same or

changes slightly, while OLSR traffic increases more strongly. Hence, the Ahoy

traffic as fraction of the total traffic decreases when the number of nodes in the

network increases. For example, in Experiment “idle” of the dynamic scenario,

the fraction is 7.1% in a 5-node network, and it decreases to 3.9% in a 13-node

network.

3. Advertisement loops generate redundant traffic. In Experiment “Advertise-

revoke”, for the full connectivity and grid structure, Ahoy generates more traf-

fic per node in the 5 nodes networks than in 13 nodes networks. This is the

result of the advertisement loop introduced in Section 3.3.3. To add infor-

mation in ABFs, advertisement messages are propagated back and forward

between neighbors multiple times, until the new information is added in all

corresponding layers of the ABFs. A minimum delay advertisement-min-time

is set between successive advertisements to merge multiple updates in one time

slot of advertisement-min-time. This reduces the amount of network traffic

to some extent, but cannot solve the problem completely, with the default

setting of 5 seconds.

Especially, the advertisement loops generate more traffic in a network with

the grid structure topology than with the full connectivity topology. Because,

all nodes are connected to each other in full connectivity networks, where all

messages are received by all nodes. Updates due to the changes take several

hops to reach all nodes in the grid network, while they take only one hop in

the full connectivity networks. The more hops there are to reach each other,

the more advertisement loops there are. Therefore, the difference is not so

apparent in the 5-node grid structured networks, due to the limited depth of

the network.

This effect is less important in some dynamic connectivity scenarios. It can

be even eliminated, because neighbors anyhow need to exchange ABFs with

each other due to the frequent change of topologies.

211

7.5 Discussion

The prototype implementation shows us the possibility to implement Ahoy in the

real world. The current protocol design of Ahoy, introduced in Chapter 3, does

not need to be modified for the implementation purpose. However, couple of issues

need to be further clarified to implements Ahoy as we discussed in Section 7.1. The

decisions are dependent on the specific network scenarios, and can be made by the

users.

Based on the experience of prototype implementation and tests, the following

extensions could be beneficial [31]:

1. Compatibility: Currently, the Ahoy prototype is specifically implemented to

work with UDP/IPv6: it uses UDP/IPv6 for sending and receiving messages;

the addresses included in queries are IPv6 addresses; it sends responses to

queries consist of an IPv6 address and a port number. Ahoy could be extended

to support for other types of network, for example by adding other types of

addresses, such as IPv4 addresses and Ethernet MAC addresses; or by defining

completely different response types, such as URIs for services implemented on

top of XML-RPC [82], or CORBA [9] identifiers.

2. Self-configuration: In the current version of Ahoy prototype, all nodes agree

on the following parameter settings to the operation of Ahoy that must be

identical for all nodes in the network, by default: the depth, d, and the width,

w, of the ABFs, the number of hash functions being used, b. Based on our

study in Chapter 4, optimal values for these parameters exist, but depend on

the properties of the network and the services being offered. Currently, there

is no way for nodes to automatically agree upon these values, and no way

for nodes to change the values in response to changes on the network. It is

necessary to enhance the function for Ahoy to allow Ahoy nodes automatically

to decide on common values and react to changes in the network, for a mobile

network.

212

Chapter 8

Conclusions and Future Work

8.1 Conclusions

Wireless technologies have developed rapidly in recent years. Due to increased band-

width and more available applications and services, ad-hoc networks can be applied

in various applications, from small scale personal environments to large scale re-

mote, and open areas. In the future, ad-hoc networks will probably be used even

more frequently, because they are easy to set up, economic, and more importantly,

they are dynamic. On the other hand, ad-hoc networks have some limitations com-

pared to fixed networks, such as relatively limited bandwidths, unstable wireless

connections, and battery-powered devices. Context is any information about the

characteristics of existing entities in the network, such as devices, applications, etc.

When a node wants to look for some context information from the present network,

those limitations pose challenges on the efficient discovery of context information.

In this thesis, we have presented a novel context discovery protocol Ahoy for ad-

hoc networks. It uses space-efficient attenuated Bloom filters (ABFs) to represent

context information types, and it supports an efficient directional context discov-

ery. ABFs represent the availability of context information types within different

numbers of hops. With ABFs, nodes can discover context information types with a

small chance of false positive probabilities.

The contributions of this thesis can be summarized as follows.

• A novel context discovery protocol Ahoy is proposed. Ahoy has been

proposed to perform context discovery for context-aware MANETs. Nodes can

213

214

have an overview about the available context information types within range,

whenever they join an Ahoy network. Using that information, nodes can locate

the relevant context information types fast and traffic-efficiently. Instead of

storing the entire information, ABFs represent the availability of all essential

information within d hops in just a few bytes. Queries are only forwarded to

selected directions with a small chance of false positives.

• An analytical model of Ahoy has been established. Based on the pro-

tocol definition, we have developed an analytical model for Ahoy. The model

is applied to two different network structures: simple grid networks and circle

networks which represent fully distributed ad-hoc networks. The model cal-

culates the overhead cost for advertisements and queries, during the discovery

phase. It can be used to optimize the system parameter settings to minimize

the network cost that is generated by Ahoy. It can also be used as a tool

to evaluate the performance of Ahoy in comparison with purely proactive and

reactive protocols. It is validated by simulations to be a very good tool to com-

pute the proper size of the attenuated Bloom filters, for which the overhead

network cost is minimized.

• The performance of Ahoy in both static and dynamic networks has

been evaluated. Using the analytical model and the simulation model devel-

oped in [27], we have evaluated the performance of Ahoy in various networks.

We have studied the overhead cost of Ahoy, including advertisements and false

positive queries, in static networks, and compared them with the overhead cost

generated by proactive and reactive protocols. Further, we have examined the

number of updates generated by Ahoy in various scenarios in dynamic networks

and compared again with proactive and reactive protocols.

• The vulnerability of Ahoy has been studied. We have analyzed the

vulnerabilities of Ahoy. Ahoy has comparable vulnerability agains malicious

attacks towards exchanged contents, compared with proactive and reactive

protocols. The effects of various attacks have been studied in a qualitative way,

and possible solutions have been discussed and proposed. Besides the inherent

security weaknesses of ad-hoc networks, especially in wireless transmissions,

some of the attacks to Ahoy itself can be detected and prevented by executing

215

the proposed rules. The existing countermeasures, e.g., encryptions, Michael

[23], etc., can also be applied to Ahoy without generating extra burdens.

• False positive probability for ABFs can be expressed exactly. Until

recently, an expression proposed by Bloom [6] was considered to be the exact

false positive probability for Bloom filters, and it has been widely used in

calculating this probability. In this thesis, we point out that this expression

is only an approximation, and we derive the exact expression. The difference

between the two expressions has been analyzed. From this, we show that the

approximate expression, proposed by Bloom, is still a good approximation for

high density networks. Due to its much simpler calculation, it is used in our

analytical models for high density networks.

The main conclusions of the performance evaluation of Ahoy can be summarized

as follows:

• Ahoy generates significantly less (up to an order of magnitude) traffic

load in a fully distributed ad-hoc network, compared to conventional

approaches. The use of ABFs significantly reduces the amount of traffic due

to advertisements and queries. Compared to the proactive and reactive proto-

cols, the performance of Ahoy depends on the ratio of query and advertisement

rates, on the query range of nodes, and less so on the density of context in-

formation sources and node density. The main conclusion is that for practical

situations, in a fully distributed ad-hoc network, Ahoy generates significantly

less (up to an order of magnitude) overhead traffic load than advertising a full

map of all available context types, or broadcasting queries when no advertise-

ments are used. As such, it is a very promising compromise between the two

extreme protocols, i.e., the proactive and reactive protocols.

• Ahoy has good scalability and performs stable in dynamic environ-

ments. We examined the performance of Ahoy for the following dynamic sce-

nario’s: node appearance, node disappearance, packet loss, and the movement

of a node. From the analysis, we conclude that network load increases almost

linearly with node density when nodes appear, disappear, or are temporarily

unreachable. This proves that Ahoy is scalable in dynamic environments, and

216

that increased network densities do not lead to an explosion in network traffic.

Instead, it results in a steady and slow almost linear increase in Ahoy traffic.

Further studies have been performed for the case that one node is moving

across the network. The simulation results show that the network load de-

creases slowly with increasing node speed. This is in line with our reality

requirements. If a node is moving fast, it will not be an ideal context source

provider. We do not want to waste network traffic to momentarily update the

information of a fast moving node. Again, we find an almost linear relation

between network load and network density, which proves that Ahoy is also

scalable in more complex mobile environments.

These conclusions answer the research questions that were posed in Section 1.4.

It shows that Ahoy is a very promising discovery protocol for ad-hoc networks. Ahoy

generates relatively little traffic to announce and discover context type information

in the network, and it uses simple operations in doing so. It behaves well; not only

in small-scale networks, but also in big and dense networks; not only in a static

network, but also in a dynamic environment.

8.2 Future Work

Ahoy is already a space- and traffic-efficient protocol, but further improvements are

possible. In the experiments, we observed that there is much less traffic generated

when context information is added than when it is removed. In particular, most

traffic is generated when context information gets out of reach of some nodes, but

still can be reached by other nodes. Reducing broadcast traffic when context sources

are removed, therefore, is an important topic for further study. A radical solution,

which will affect all traffic, is just to restrict the input information based on the

quality of context. Only high-quality information should be added into the filters.

As mentioned in Chapter 5, Ahoy can be integrated with underlying routing

protocols to limit the flooding of route requests. Generally, route requests are flooded

through the entire network in DSR and AODV [71]. When Ahoy is applied, a node

would query for context information and get a reply including an address and explicit

(DSR) or implicit (AODV) routing information.

217

We can also improve Ahoy by making it more “context aware” and “self-adjusting”.

It should adapt its own behavior to offer optimal network traffic based on the cur-

rent network situation. The performance will be improved if Ahoy can automatically

adjust for all nodes in the network the Bloom filters’ parameters, like the depth, the

width, the number of hash functions, and the keep-alive period, can automatically

choose between parallel query method or sequential query method, and can au-

tomatically apply different actions based on different security requirements. The

protocol design would have to be extended to a system that is based on zones where

nodes are grouped according to certain characteristics, such as their geographic po-

sitions. The extension of the protocol should then address the important issue of

the transition of discovery processes between zones.

Finally, as we discussed in Chapter 6, Ahoy can be further expanded as a policy-

based discovery protocol to enhance the network security.

With this future work, it is possible to develop an adaptive, slim, context-aware,

and secure discovery protocol offering the services to find and locate information

fast and accurate for ad-hoc networks.

218

Appendix A

Figures of the Overhead Cost by
Ahoy, the Proactive and the
Reactive Protocols with Different
Paramters

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(a) Grid: d = 3

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(b) Circular: d = 3

Figure A.1: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d varies from 3 to 10 and s = 1

219

220

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(c) Grid: d = 4

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(d) Circular: d = 4

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(e) Grid: d = 6

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(f) Circular: d = 6

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(g) Grid: d = 7

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(h) Circular: d = 7

Figure A.1: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d varies from 3 to 10 and s = 1

221

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(i) Grid: d = 8

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(j) Circular: d = 8

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(k) Grid: d = 9

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/µ)

lg
(c

os
t/µ

)

Ahoy
Proactive
Reactive

(l) Circular: d = 9

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(m) Grid: d = 10

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(n) Circular: d = 10

Figure A.1: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d varies from 3 to 10 and s = 1

222

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(a) Grid: d = 3

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(b) Circular: d = 3

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(c) Grid: d = 4

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(d) Circular: d = 4

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(e) Grid: d = 5

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(f) Circular: d = 5

Figure A.2: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d varies from 3 to 10 and s = 4

223

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(g) Grid: d = 6

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(h) Circular: d = 6

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(i) Grid: d = 7

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(j) Circular: d = 7

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(k) Grid: d = 8

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(l) Circular: d = 8

Figure A.2: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d varies from 3 to 10 and s = 4

224

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(m) Grid: d = 9

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Non AD

(n) Circular: d = 9

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/μ)

lg
(c

os
t/μ

)

Ahoy
Proactive
Reactive

(o) Grid: d = 10

-4 -2 0 2 4 6 8
1

2

3

4

5

6

7

lg(λ/µ)

lg
(c

os
t/µ

)

Ahoy
Proactive
Reactive

(p) Circular: d = 10

Figure A.2: Overhead costs generated by Ahoy, the proactive and the reactive
protocols while varying λ/µ while d varies from 3 to 10 and s = 4

225

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) s = 1, λ = 0.0001

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) s = 1, λ = 0.001

3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) s = 1, λ = 0.01

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18 x 104

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) s = 1, λ = 1

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4 x 105

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(e) s = 1, λ = 10

Figure A.3: Overhead cost of Ahoy, the proactive and reactive protocols while
varying the ABF depth d, and setting s = 1 and µ = 0.1

226

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18 x 106

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(f) s = 1, λ = 100

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(g) s = 1, λ = 100, (focused)

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18 x 107

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(h) s = 1, λ = 1000

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(i) s = 1, λ = 1000, (focused)

Figure A.3: Overhead cost of Ahoy, the proactive and reactive protocols while
varying the ABF depth d, and setting s = 1 and µ = 0.1

227

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) s = 4, λ = 0.0001

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

2000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) s = 4, λ = 0.001

3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) s = 4, λ = 0.01

3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) s = 4, λ = 0.1

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18 x 104

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(e) s = 4, λ = 1

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4 x 105

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(f) s = 4, λ = 10

Figure A.4: Overhead cost of Ahoy, the proactive and reactive protocols while
varying the ABF depth d, and setting s = 4 and µ = 0.1

228

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18 x 106

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(g) s = 4, λ = 100

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(h) s = 4, λ = 100, (focused)

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18 x 107

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(i) s = 4, λ = 1000

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

d

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(j) s = 4, λ = 1000, (focused)

Figure A.4: Overhead cost of Ahoy, the proactive and reactive protocols while
varying the ABF depth d, and setting s = 4 and µ = 0.1

229

1 2 3 4 5 6
0

200

400

600

800

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) d = 3, λ = 0.001

1 2 3 4 5 6
0

200

400

600

800

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) d = 3, λ = 0.01

1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) d = 3, λ = 0.1

1 2 3 4 5 6
0

5,000

10,000

15,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) d = 3, λ = 1

1 2 3 4 5 6
0

2

4

6

8

10

12

14

16 x 104

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(e) d = 3, λ = 10

Figure A.5: Impact of the context type density, s, on the overhead cost of Ahoy,
the proactive and the reactive protocols, while d = 3 and µ = 0.1

230

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) d = 5, λ = 0.001

1 2 3 4 5 6
0

1,000

2,000

3,000

4,000

5,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) d = 5, λ = 0.01

1 2 3 4 5 6
0

10,000

20,000

30,000

40,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) d = 5, λ = 1

1 2 3 4 5 6
0

100,000

200,000

300,000

400,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) d = 5, λ = 10

Figure A.6: Impact of the context type density, s, on the overhead cost of Ahoy,
the proactive and the reactive protocols, while d = 5 and µ = 0.1

231

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000
15000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) d = 10, λ = 0.001

1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

450

500

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(b) d = 10, λ = 0.001, (focused)

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000
15000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) d = 10, λ = 0.01

1 2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) d = 10, λ = 0.1

1 2 3 4 5 6
0

40,000

80,000

120,000

160,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(e) d = 10, λ = 1

Figure A.7: Impact of the context type density, s, on the overhead cost of Ahoy,
the proactive and the reactive protocols, while d = 10 and µ = 0.1

232

1 2 3 4 5 6
0

400,000

800,000

1,200,000

1,600,000

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(f) d = 10, λ = 10

1 2 3 4 5 6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5 x 104

s

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(g) d = 10, λ = 10, (focused)

Figure A.7: Impact of the context type density, s, on the overhead cost of Ahoy,
the proactive and the reactive protocols, while d = 10 and µ = 0.1

233

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(a) d = 3

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2
co

st
(b

its
/s

)

Ahoy
Proactive
Reactive

(b) d = 5

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(c) d = 7

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8 x 104

nπr2

co
st

(b
its

/s
)

Ahoy
Proactive
Reactive

(d) d = 10

Figure A.8: Impact of network density, n, on the overhead cost of Ahoy, the
proactive and the reactive protocols, while s = 4, λ = 0.1, µ = 0.1

234

Appendix B

The Probability Distribution of
the Number of Bits Set

In Ahoy, we assume that the total number of context information in range x can

be estimated by estimation techniques, such as using historical data, etc. We can

obtain the width of filter w and the number of hash functions in use (b) to achieve

the minimum overhead cost based on the maximum number of discovery hops d and

the number of context information x in range, (see Chapter 4). Hash functions are

independent of each other. Each context information is hashed b times by different

hash functions. Each time, one bit position is chosen to set to 1. A bit can be

chosen multiple times. If the chosen bit has already been set to 1, it stays the same.

In total, the bits positions of the filter are chosen b× x times over the range [1..w].

The distribution of the number of 1s set in the filter is the research question here.

We use a discrete time Markov chain (DTMC) to solve the problem. The state

space S = {0, 1, · · · , w} represents the total number of 1s set in the filter. The

transition between states is taken place whenever one piece of context information

is hashed by a hash function. If there are already i bits positions set to 1 in ABFs,

the probability for the next bit set in the previous i positions is i/w. The probability

for the next bit set into the remaining (w − i) positions is (w − i)/w. Therefore,

for state i(0 ≤ i ≤ w), with probability i/w it still stays in the current state i;

with probability (w − i)/w it goes to the next state (i + 1). This is illustrated in

Figure B.1.

We can translate the Markov chain into a (w+1)× (w+1) transition probability

matrix as follows:

235

236

w
1

w
w 1−

w
2

w
w 2−

w
i

w
iw −

w
iw 1+−

w
i 1+

w
iw 1−−

w
1

Figure B.1: The states diagram of the total number of 1s set in one filter

P =

0 1 0 0 · · · 0 0 · · · 0
0 1

w
w−1
w

0 · · · 0 0 · · · 0
0 0 2

w
w−2
w
· · · 0 0 · · · 0

...
...

...
...

...
...

...
... 0

0 0 0 0 · · · i
w

w−i
w
· · · 0

...
...

...
...

...
...

...
... 0

0 0 0 0 · · · 0 0 · · · 1

(B.1)

The initial state of the DTMC is given by the vector,

p(0) = (1, 0, 0, · · · , 0) (B.2)

For x number of context information, bit positions are set b · x times in total. This

corresponds to undertaking b ·x steps in the DTMC. The transient state probability

distribution at time b · x equals

p(bx) = p(0) ·Pbx.

The ith entry in this vector is denoted by pi(bx). The discrete random variable

Y represents the number of bits that is set in the filter. The probability density

function can be given by:

fY (y) = Pr {Y = y} = py(bx). (B.3)

The cumulative distribution function can be obtained as follows:

FY (y) = Pr {Y = y} =

y∑
i=0

fY (i) =

y∑
i=0

Pr {Y = i}

=

y∑
i=0

pi(bx),

(B.4)

237

and equals the sum of the first y entries of the state probability distribution at time

bx.

238

Bibliography

[1] W. Adjie-Winoto, E. Schwarts, H. Balakrishnan, and J. Lilley. The design and
implementation of an international naming system. In Proc. of the 17th ACM
Symposium on Operating Systems Principles, SOSP’99, Charleston, United
States, December 1999.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sen-
sor networks: A survey. Computer Networks Elsevier Journal, 38(4):393–422,
March 2002.

[3] Y. an Huang and W. Lee. Hotspot-based traceback for mobile ad-hoc networks.
In Proc. of the 4th ACM Workshop on Wireless Security, Cologne, Germany,
September 2005.

[4] F. Anjum and P. Mouchtaris. Security for Wireless Ad Hoc Networks. John
Wiley and Sons Ltd, 2007.

[5] C. Bettstetter. On the minimum node degree and connectivity of a wireless
multihop networks. In Proc. of the 3rd ACM International Symposium on
Mobile Ad Hoc Networking and Computing, MOBIHOC’02, EPF Lausanne,
Switzerland, June 2002.

[6] B. H. Bloom. Space/Time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[7] Bluetooth SIG. Bluetooth core specification 3.0 + HS.
http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/,
April 2009.

[8] A. Broder and M. Mitzenmacher. Network applications of Bloom filters: a
survey. Internet Mathematics, 1(4):485–509, 2003.

[9] G. Brose, A. Vogel, and K. Duddy. Java Programming with CORBA. John
Wiley and Sons, Inc, 2001.

239

240

[10] S. A. Camtepe and B. Yener. Key distribution mechanisms for wireless sen-
sor networks: a survey. Technical report, Department of Computer Science,
Rensselaer Polytechnic Institute, Troy, NY, US, 2005.

[11] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Computer
and System Sciences, 18(2):143–154, 1979.

[12] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Gsd: a novel group-based
service discovery protocol for MANETs. In Proc. of the 4th IEEE International
Conference on Mobile and Wireless Communications Networks, MWCN 2002,
Stockholm, Sweden, September 2002.

[13] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chan-
dra, and A. Fikes. Bigtable: A distributed storage system for structured data.
In Proc. of the 7th Symposium on Operating System Design and Implementa-
tion, OSDI’06, Seattle, United States, November 2006.

[14] I. Chlamtac, M. Conti, and J. J. Liu. Mobile ad hoc networking: Imperatives
and challenges. Ad Hoc Networks, 1(1):13–64, July 2003.

[15] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR).
RFC 3626, Project Hipercom, INRIA, October 2003.

[16] A. Conta and S. Deering. Internet control message protocol (ICMPv6) for the
internet protocol version 6 (IPv6) specification. RFC 2463, Lucent and Cisco
Systems, December 1998.

[17] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, August 2003.

[18] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An
architecture for a secure service discovery service. In Proc. of the 5th annual
ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom 99, Seattle, United States, August 1999.

[19] N. Daswani, C. Kern, and A. Kesavan. Foundations of Security: What Every
Programmer Needs To Know. Apress, 2007.

[20] Debian webpage. http://www.debian.org/, March 2011.

[21] M. Degermark, B. Nordgren, and S. Pink. IP header compression. RFC 2507,
Lulea University of Technology, February 1999.

241

[22] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction, 16(2):97–166, December 2001.

[23] N. Ferugson. Michael: an improved MIC for 802.11 WEP. IEEE
802.11 doc 02-020r0, http://grouper.ieee.org/groups/802/11/Documents/
DocumentHolder/2-020.zip, January 2002.

[24] C. Frank and H. Karl. Consistency challenges of service discovery in mobile ad
hoc networks. In Proc. of the 7th International Symposium on Modeling, Anal-
ysis and Simulation of Wireless and MObile Systems, MSWiM 2004, Venice,
Italy, November 2004.

[25] Freeband AWARENESS webpage. http://www.freeband.nl/project.cfm?id=494,
March 2011.

[26] J. Gao and P. Steenkiste. Rendezvous points-based scalable content discovery
with load balancing. In Proc. of Fouth International Workshop on Network
Group Communication, Boston, USA, October 2002.

[27] P. T. Goering and G. J. Heijenk. Service discovery using Bloom filters. In Proc.
of 12th Annual Conference of the Advanced School for Computing and Imaging,
Lommel, Belgium, June 2006.

[28] P. T. Goering, G. J. Heijenk, B. Haverkort, and R. Haarman. Effect of mobil-
ity on local service discovery in ad-hoc. In Proc. of Performance Engineering
Workshop 2007, Berlin, Germany, September 2007.

[29] L. L. Gremillion. Designing a Bloom filter for differential file access. Commu-
nications of the ACM, 25(9):600–604, 1982.

[30] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service discovery proto-
col version 2. RFC 2608, Sun Microsystems and @Home Network and Vinca
Corporation, June 1999.

[31] R. Haarman. Ahoy: A proximity-based discovery protocol. Master’s thesis,
University of Twente, the Netherlands, January 2007.

[32] R. Haarman, F. Liu, P. T. Goering, and G. J. Heijenk. Proof-of-Concept imple-
mentation of the ahoy discovery protocol in ad-hoc networks. CTIT technical
report, Universiy of Twente, Centre for Telematics and Information Technology,
the Netherlands, May 2011.

242

[33] B. R. Haverkort. Performance of Computer Communciation Systems: a Model-
based Approach. John Wiley and Sons Ltd, 1998.

[34] R. Hekmat and P. V. Mieghem. Degree distribution and hopcount in wireless ad-
hoc networks. In Proc. of the 11th IEEE International Conference on Networks,
ICON2003, Sydney, Austrilia, September 2003.

[35] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a service discovery pro-
tocol for ad-hoc networks. In Proc. of the 3rd IEEE Conference on Wireless
Communication Networks, WCNC 2003, New Orleans, USA, March 2003.

[36] A. Helmy. Resource Management in Wireless Networking, volume 16, chapter
Efficient Resource Discovery in Wireless Ad-hoc Networks: Contents Do Help,
pages 419–471. Springer US, 2005.

[37] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester. Analysis of decentral-
ized resource and service discovery mechanisms in wireless multi-hop networks.
In Proc. of the 3rd international Conference on Wired/Wireless Internet Com-
munications, WWIC2005, Xanthi, Greece, May 2005.

[38] IEEE Computer Society LAN/MAN Standards Committee. IEEE standard
for information technologytelecommunications and information exchange be-
tween systemslocal and metropolitan area networksspecific requirements, part
11: Wireless lan medium access control (MAC) and physical layer (PHY) spec-
ifications. Technical report.

[39] IEEE SA. 802.11n standard. http://standards.ieee.org/getieee802/download/
802.11n-2009.pdf, 2009.

[40] IEEE standards association. Wireless LAN medium ac-
cess control (MAC) and physical layer (PHY) specifications.
http://standards.ieee.org/getieee802/802.11.html, 1999.

[41] IEEE standards association. Draft amendment to standard for telecommuni-
cations and information exchange between systems - LAN/MAN specification
requirements - part 11: Wireless medium access control (MAC) and physical
layer (PHY) specifications: Medium access control (MAC) security enhance-
ments. IEEE Std 80211i/D7.0, October 2003.

[42] IEEE standards association. 802.11n-2009 IEEE standard for infor-
mation technology–telecommunications and information exchange between
systems–local and metropolitan area networks–specific requirements part
11: Wireless lan medium access control (MAC) and physical layer

243

(PHY) specifications amendment 5: Enhancements for higher throughput.
http://ieeexplore.ieee.org/servlet/opac?punumber=5307291, 2009.

[43] D. Johnson, C. Perkins, and J. Arkko. Mobility support in IPv6. RFC 3775,
Rice Univeristy, Nokia Research Center and Ericsson, June 2004.

[44] M. R. Jongerden. Model-based energy analysis of battery powered systems. PhD
thesis, University of Twente, the Netherlands, December 2010.

[45] M. Klein, B. Konig-Ries, and P. Obreiter. Service rings - a semantic overlay
for service discovery in ad hoc networks. In Proc. of the 14th International
Workshop on Database and Expert Systems Applications, DEXA 2003, Prague,
Czech Republic, September 2003.

[46] T. Kosch, C. Adler, S. Eichler, C. Schroth, and M. Strassberger. The scalability
problem of vehicular ad hoc networks and how to solve it. IEEE Wireless
Communications Magazine, 13(5):22–28, October 2006.

[47] U. C. Kozat and L. Tassiulas. Service discovery in mobile ad hoc networks: an
overall perspective on architectural choices and network layer support issues.
Ad Hoc Networks, 2(1):23–44, June 2003.

[48] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[49] V. Lenders, M. May, and B. Plattner. Service discovery in mobile ad hoc net-
works: A field theoretic approach. Pervasive and Mobile Computing, 1(1):343–
370, March 2005.

[50] F. Liu, P. T. Goering, and G. J. Heijenk. Modeling service discovery in ad-hoc
networks. In Proc. of the 4th ACM International Workshop on Performance
Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, PE-WASUN
2007, Chania, Greece, October 2007.

[51] F. Liu and G. J. Heijenk. Context discovery using attenuated Bloom filters in
ad-hoc networks. In Proc. of the 4th Wired/Wireless Internet Communications,
WWIC06, Bern, Switzerland, May 2006.

[52] F. Liu and G. J. Heijenk. Context discovery using attenuated Bloom filters in
ad-hoc networks. Journal of Internet Engineering, 1(1):49–58, 2007.

[53] F. Liu and G. J. Heijenk. Dynamic connectivity analysis of abf-based ad-hoc
networks. In Proc. of the 1st IFIP Wireless and Mobile Networking Conference,
Toulouse, France, September 2008.

244

[54] F. Liu and G. J. Heijenk. On the impact of network dynamics on a discovery
protocol for ad-hoc networks. International Journal of Business Data Commu-
nications and Networking, 5(3):16–34, 2009.

[55] J. Liu, D. Sacchetti, F. Sailhan, and V. Issarny. Group management for mobile
ad-hoc networks: Design, implementation and experiment. In Proc. of the 6th
IEEE International Conference on Mobile Data Management, MDM ’05, Ayia
Napa, Cyprus, May 2005.

[56] R. Marin-Perianu. Wireless Sensor Networks in Motion: Clustering Algorithms
for Service Discovery and Provisioning. PhD thesis, University of Twente, the
Netherlands, November 2008.

[57] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[58] B. T. Mohamed, M. Abdelaziz, and E. Pouyoul. Project JXTA: A loosely-
consistent DHT rendezvous walker, May 2003.

[59] U. Mohan, K. C. Almeroth, and E. M. Belding-Royer. Scalable service discovery
in mobile ad hoc networks. Lecture Notes in Computer Science, 3042/2004:137–
149, 2004.

[60] J. K. Mullin. A second look at Bloom filters. Communications of the ACM,
26(8):570–571, 1983.

[61] P. Mutaf and C. Castelluccia. Compact neighbor discovery. In Proc. IEEE
INFOCOM 2005, Miami, March 2005.

[62] M. Nidd. Service discovery in deapspace. IEEE PCM, 8(4):39–45, August 2001.

[63] OPNET modeler software. http://www.opnet.com/products/modeler, March
2011.

[64] E. Papapetrou, E. Pitoura, and K. Lillis. Speeding-up cache lookups in wireless
ad-hoc routing using Bloom filters. In Proc. of the 16th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
2005, Berlin, Germany, September 2005.

[65] M. Penrose. Random Geometric Graphs. Oxford University Press Inc, 2003.

[66] C. Perkins. IP mobility support for IPv4. RFC 3344, Nokia Research Center,
August 2002.

245

[67] R. Ramanathan and J. Redi. A brief overview of ad hoc networks: challenges
and directions. Communications Magazine, IEEE, 40(5):20–22, May 2002.

[68] O. Ratsimor, D. Chakraborty, A. Joshi, and T. Finin. Allia: Alliance-based ser-
vice discovery for ad-hoc environments. In Proc. of 2nd ACM Mobile Commerce
Workshop, MC 2002, Atlanta, USA, September 2002.

[69] S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. In Proc. of
the 21th Annual Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM 2002, New York, United States, June 2005.

[70] Ruby online home. http://www.ruby-lang.org/, March 2011.

[71] J. Schiller. Mobile Communications. Addision Wesley, 2000.

[72] M. Sipser. Introduction to the Theory of computation, Second Edition. Thomson
Course Technology, 2006.

[73] D. H. Steiberg and S. Cheshire. Zero Configuration Networking: The Definitive
Guide. O’Reilly Media, 2005.

[74] Sun Microsystems. DJ - Jini disocvery and join specification v3.0.
http://java.sun.com/products/jini/2.1/doc/specs/html/discovery-spec.html,
September 2006.

[75] V. Sundramoorthy, H. Scholten, P. Jansen, and P. Hatel. Service discovery at
home. In Proc. of the 4th International Conference on Information, Communi-
cations and Signal Processing and 4th IEEE Pacifi-Rim conference, Singapore,
December 2003.

[76] Tcpdump public repository. http://www.tcpdump.org/, March 2011.

[77] The Salutation Consortium. Salutation architecture specification version 2.0c.
http://www.salutation.org, June 1999.

[78] UPnP Forum. UPnP device architecture version 1.0, June 1999.

[79] User Mode Linux. http://www.usermodelinux.org/, March 2011.

[80] A. Varshavsky, B. Reid, and E. de Lara. A cross-layer approach to service
discovery and selection in MANETs. In Proc. of Mobile Ad-hoc and Sensor
System Conference, MASS 2005, Washington, USA, November 2005.

[81] B. Wu, J. Chen, J. Wu, and M. Cardei. Wireless Network Security, chapter
A Survey of Attacks and Countermeasures in Mobile Ad Hoc Networks, pages
103–135. Springer US, Florida Atlantic University, US, 2007.

246

[82] XML-RPC webpage. http://www.xmlrpc.com/, March 2011.

[83] Y. Yang, H. Hassanein, and A. Mawji. Efficient service discovery forwireless mo-
bile ad hoc networks. In Proc. of IEEE International Conference on Computer
Systems and Applications, AICCSA 2006, Dubai, Sharjah, March 2006.

[84] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network, 13(1):24–30.

[85] F. Zhu, M. Mutka, and L. Ni. Splendor: A secure, private, and location-aware
service discovery protocol supporting mobile services. In Proc. of the First
IEEE International Conference on Pervasive Computing and Communications,
PerCom 2003, Texas, USA, March 2003.

About the Author

Fei Liu was born in Changzhou, China, on September 17, 1980. She obtained her
B.Sc. degree in Computer Science (with honor) from Jiangsu Polytechnic University,
China in 2002. She then came to the Netherlands and started her master study in
Telematics in the University of Twente. In 2004 she was awarded her Master degree
with the master thesis titled Design and Develop an Interference-based Routing
Algorithm for Cellular Networks. Since then she has been conducting her Ph.D.
research on Context Discovery in Ad-hoc Networks in the same group, and as part
of Freeband AWARENESS project. From 1 June 2009, Fei Liu has joined the Center
for Transport Studies (CTS) in the same university. She has been working on
the development and simulation of Cooperative Adaptive Cruise Control (CACC)
systems, as part of Connect & Drive project. Her main topics of interest are context
discovery, mobile and wireless networking, intelligent transportation systems.

Her publications are listed below in chronological order:

• Haarman, R., Liu, F., Goering, P., and Heijenk, G. (2011). Proof-of-Concept
Implementation of the Ahoy Discovery Protocol in Ad-hoc Networks. Technical
report TR-CTIT-11-10, Centre for Telematics and Information Technology
Universiy of Twente, Enschede.

• Pueboobpaphan, R., Liu, F. and Arem, B. van (2010). The Impacts of a Com-
munication based Merging Assistant on Traffic Flows of Manual and Equipped
Vehicles at an On-ramp Using Traffic Flow Simulation. In: 13th International
Conference on Intelligent Transportation Systems, September 19-22-2010 in
Madeira Island, Portugal. (DVD) (pp. 1468-1473). Funchai: ITS (ISBN
978-142447657-2).

• Liu, F., Pueboobpaphan, R., Van Arem, B. (2009). Assessment of Traffic
Impact on Future Cooperative Driving Systems: Challenges and Considera-
tions. International Workshop on Communication Technologies for Vehicles,
October, Saint-Petersburg, Russia.

247

248

• Liu, F. and Heijenk, G.J. (2009) On the impact of network dynamics on a
discovery protocol for ad-hoc networks. International Journal of Business Data
Communications and Networking, 5 (2). pp. 16-34.

• Pawar, P. and Boros, H. and Liu, F. and Heijenk, G.J. and van Beijnum,
B.J.F. (2009) Bridging Context Management Systems in the ad hoc and mobile
environments. In: IEEE Symposium on Computers and Communications,
2009. ISCC 2009., 5-8 July 2009, SOusse, Tunisia. pp. 882-888. IEEE
Computer Society Press.

• Hesselman, C.E.W. and Benz, H.P. and Pawar, P. and Liu, F. and Wegdam,
M. and Wibbels, M. and Broens, T.H.F. and Brok, J. (2008) Bridging context
management systems for different types of pervasive computing environments.
In: Proceedings of the First International Conference on MOBILe Wireless
MiddleWARE, Operating Systems, and Applications, 15-17 February 2008,
Innsbruck, Austria. pp. 1-8. ACM International Conference Proceedings serie
278. Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering.

• Liu, F. and Heijenk, G.J. (2008) Dynamic connectivity analysis of ABF-based
ad-hoc networks. In: Proceedings of the 1st IFIP Wireless and Mobile Net-
working Conference, 30 Sep - 02 Oct 2008, Toulouse, France. pp. 407-420.
Springer Verlag.

• Liu, F. and Goering, P.T.H. and Heijenk, G.J. (2007) Modeling service dis-
covery in ad-hoc networks. In: Proceedings of the Fourth ACM International
Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiq-
uitous Networks, PE-WASUN 2007, 22 - 26 Oct 2007, Chania, Greece. pp.
9-16. Association for Computing Machinery.

• Liu, F. and Heijenk, G.J. (2007) Context discovery using attenuated Bloom
filters in ad-hoc networks. Journal of Internet Engineering, 1 (1). pp. 49-58.

• Heijenk, G.J. and Liu, F. (2006) Interference-based routing in multi-hop wire-
less infrastructures. Computer Communications, 29 (13-14). pp. 2693-2701.
*** ISI Impact 0,933 ***

• Liu, F. and Heijenk, G.J. (2006) Context discovery using attenuated Bloom
codes: model description and validation. Technical Report TR-CTIT-06-09,
Centre for Telematics and Information Technology University of Twente, En-
schede.

249

• Liu, F. and Heijenk, G.J. (2006) Context discovery using attenuated Bloom
filters in ad-hoc networks. In: Proceedings 4th International Conference on
Wired/Wireless Internet Communications, WWIC 2006, May 9-12, 2006, Bern,
Switzerland. pp. 13-25. Lecture Notes in Computer Science 3970. Springer-
Verlag.

• Heijenk, G.J. and Liu, F. (2005) Interference-based routing in multi-hop wire-
less infrastructures. In: Proceedings Wired/Wireless Internet Communica-
tions: Third International Conference, WWIC 2005, 11 - 13 May 2005, Xanthi,
Greece. pp. 117-127. Lecture Notes in Computer Science 3510 / 2005.

250

Acknowledgements

This book does not only record the scientific research I have done, but also the

precious experience I had in the past couple of years. I would like to express my

gratitude to all those who have helped me during the PhD trajectory.

Dear Geert, I am very lucky to have you as my daily supervisor. From the

master’s assignment to the PhD research, you have taught me a lot. I learned how

to do solid scientific research and how to organize and present my work. I believe

throughout the entire PhD training, the most valuable outcome is the proper manner

of conducting research, the discipline, and the rigorous attitude towards science. I

will benefit from your guidance and influence for my whole life. Geert, you are not

only a wonderful supervisor at work, but also a great mentor and friend in life. In

the most difficult period of my life, your offered me many generous help and support.

Without you, this thesis could not have reached this far.

I would also like to thank Boudewijn Haverkort for his helpful insights and great

advice. I have been constantly inspired by every discussion we had.

It is my honor to have Prof. dr. Marilia Curado, Prof. dr. ir. Erik R. Fledderus,

Prof. dr. ir. Sonia Heemstra de Groot, Prof. dr. Hans van den Berg, and Prof.

dr. ir. Kees C.H. Slump as members of my graduation committee. I thank each of

them for accepting the invitation and reviewing my work.

The design and development of the Ahoy discovery protocol is a team work. I

have collaborated closely with Patrick Goering and Robbert Haarman during the

first couple of years. I am grateful for all fruitful discussions and collaborations. It

was a great fun to work with you two! Thank you Robbert for carefully reading the

draft version of the thesis.

I would like to thank Marijn Jongerden, Anne Remke, and Pieter-Tjerk de Boer

for their help with mathematic proofs.

I would also like to thank all the colleagues from the AWARENESS project.

251

252

It was a great experience to work in a Dutch national project and cooperate with

colleagues with different expertise.

Special thanks to Tom Thomas who has given me lots of inspiration at the final

phase and spent days and nights to improve the language in this thesis. I would

also like to thank Wouter Hermelink for the cover design of this book.

Friendship is especially precious when you are in trouble. My dear friends, thank

you all very much for your selfless help and support. Without your warm hugs and

encouragement, it would have been very difficult to complete this work and continue

my life in Holland. Thank you very much Yimeng, Yuanliang, Silvia, Geert, Didem,

Semih, Albert, Yuanqing, Lei, Shi, Anna, Hailiang, Pravin, Desi, Marijn, Anne,

Georgios, Aiko, Tiago, Ramin, Tatiana, Lucia, Boudewijn, Wouter, Idilio, Martijn.

I am thankful to all the people who helped me to overcome those difficulties and

make me grow up.

I would also like to thank all my colleagues in the Center of Transportation Study

in University of Twente for making a very ”gezellig” environment and make me feel

part of the team. I especially wish to thank Eric van Berkum, Bart van Arem, and

Marieke Martens for your understanding and support.

I would like to dedicate this book to my parents and my sister. You are always

there when I need you, no matter what happens. Your selfless love is the most solid

support in my whole life. Yong yuan gan xie ni men!

Finally, to Kaien and Tommie, there is no single word that can express my

gratitude to you. You brought countless happiness into my life. I wish I can also be

the source of your happiness for the rest of my life.

